A metamodel-based approach to model validation for nonlinear finite element simulations

PDF Version Also Available for Download.

Description

Metamodeling, also known as response surface analysis, is the de facto standard for mathematical representation of complex phenomena in many fields, especially when first principles physical relationships are not well-defined, e.g. economics, climatology, and government policy. Metamodels provide a computationally efficient, low-dimension relationship for studying the behavior of a physical system. They can be used for understanding the physical system, predicting its response, optimizing its design or the parameters in a physical model, and performing verification and validation. Metamodels can be derived from simulation results or fit directly to observed test data. In structural dynamics, typical practice is to develop ... continued below

Physical Description

8 p.

Creation Information

Doebling, S. W. (Scott W.); Hemez, F. M. (François M.); Schultze, J. F. (John F.) & Cundy, A. L. (Amanda L.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Metamodeling, also known as response surface analysis, is the de facto standard for mathematical representation of complex phenomena in many fields, especially when first principles physical relationships are not well-defined, e.g. economics, climatology, and government policy. Metamodels provide a computationally efficient, low-dimension relationship for studying the behavior of a physical system. They can be used for understanding the physical system, predicting its response, optimizing its design or the parameters in a physical model, and performing verification and validation. Metamodels can be derived from simulation results or fit directly to observed test data. In structural dynamics, typical practice is to develop a first-principles-based model such as a finite element model to study the behavior of the system. However, it is common that the features of interest in a structural dynamics simulation are relatively low order (e.g. first few modal frequencies, peak acceleration at certain locations) and sensitive to relatively few model and simulation parameters. In these cases, metamodeling provides a convenient format to facilitate activities of model validation, including parameter screening, sensitivity analysis [3], uncertainty analysis, and test/analysis correlation. This paper describes the creation of metamodels, and presents some examples of how metamodels can be employed to facilitate model validation for nonlinear structural dynamic response simulation

Physical Description

8 p.

Source

  • "Submitted to: IMAC XX, A Conference and Exhibition on Structural Dynamics, Feb. 4-7, 2002, Los Angeles, CA"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-5870
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975833
  • Archival Resource Key: ark:/67531/metadc927412

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 6:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Doebling, S. W. (Scott W.); Hemez, F. M. (François M.); Schultze, J. F. (John F.) & Cundy, A. L. (Amanda L.). A metamodel-based approach to model validation for nonlinear finite element simulations, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc927412/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.