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Two coexisting facets of warm nuclei, quantum chaos and structure of the level density, 
are considered. A newly developed combinatorial level-density model is presented, a nd 
the role of collective enhancements discussed. An example of extreme parity enhancement 
is shown. 

1. Introduct ion 

The energy region of the first few MeV above the ground state shows interesting 
features of the nucleus. Beyond an ordered energy region just above the ground-state 
the dynamics changes, and chaotic features are observed in the neutron resonance 
region. The statistical properties of energies and wave-functions are common to 
all chaotic nuclei . However, if instead a global property, like the local level-density 
function is studied, strong structure effects emerge. In this contribution we discuss 
these two different facets of warm nuclei. 

In section 2 the onset of chaos with increasing excitation energy is discussed , 
with both experimental observations and proposed theoretical mechanisms as start
ing points. The structure of level densities in the same excitation energy region 
based on the two different starting points, is treated in section 3, where we give a 
short presentat ion of a newly developed combinatorial level-density model l . Some 
results from the model are presented and discussed . 

2. Qua n t u m Cha os in the N u cle us 

The famous conjecture by Bohigas et al2 states that Energies and wave functions 
for a quantum version of a classically chaotic system show generic statistical behav
ior described by random matrix theory. Classically regular systems follow Poisson 
statistics while classically chaotic systems follow statistics of Gaussian Orthogonal 
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Fig. 1. Nearest-neighbor spacing distributions from experimental data. The left-hand figure shows 
the near-yrast region, and the right-part figure the neutron resonance region. From Ref. 3 . 

Ensembles, GOE (if time-reversal invariant) in the corresponding quantum versions. 
Consequently, the term quantum chaos is used to describe quantum systems that 
in the classical limit are chaotic. Although it is difficult to speak about a classical 
correspondence to the nuclear many-body problem, the term quantum chaos is of
ten used as a characterization of a quantum system that exhibits statistical features 
from GOE, and in this contribution we shall follow this practice. 

In Fig. 1 the experimental information for heavy nuclei clearly shows that cold 
states, close to the ground state (or the yrast line) , exhibit a nearest-neighbor dis
tribution of Poisson statistics, characteristic of regular dynamics (left-hand figure), 
while states in the neutron resonance region at 7-8 MeV show chaotic features , i.e. 
follow GOE statistics (right-hand figure) . Thus, a transition from order to chaos 
appears somewhere in the energy region between 0-8 MeV. The transition point can 
be studied theoretically in a model that mixes many-body wave-functions through 
a residual two-body interaction. 

In Refs. 4 ,5 the many-body states (Slater determinants) are described as n
particle-n-hole excitations of the deformed and rotating many-body ground state, 

10 >, 
n 

If.l >= II a;;', aj, 10 >, (1) 
i= l 

where all configurations with n=l , 2, 3 ... are considered. The corresponding energy 
is given as, 

E/1- = L
n 

(em, - ej') + Eo, (2) 
i= 1 

where Eo is the ground-state energy, e are eigen energies to the one-body deformed 
(and rotating) mean field Hamiltonian, and the indices m and j refer to particle 

" 
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and hole states, respectively. A residual two-body interaction, W, is subsequently 
added and the total many-body Hamiltonian is written as, 

(3) 

where Wijkl are two-body matrix elements of W. Many-body energies and wave 
functions of the interacting many-body system are finally obtained by diagonaliza
tion in a truncated many-body space, giving eigen functions 

la >= L c"I, IJ.L > . (4) 
I' 

This mixture of states is due to the residual interaction W, and can be characterized 
by a spreading width, r 11-' that describes the energy range in which states are 
coupled . The size of the spreading width may be estimated from Fermis golden 
rule, 

(5) 

where P2p - 2h is the density of states at excitation energy E exc that are directly 
coupled by the two-body residual interaction W. The role of the residual interaction 
increases with increasing excitation energy, and chaos is found to set in6 when the 
condition W ~ (! - ~)/p2p-2h is met. Based on microscopic calculations utilizing 
a c5-type two-body interaction with appropriate strength, it is found that chaos 
appears at about 3 MeV excitation energy for medium-heavy (rotating) nuclei5 . 

3. Structure of the Leve l Densities 

As discussed above, the chaotic features of the nucleus are theoretically suggested to 
set in already at about 3 MeV excitation energy in medium mass nuclei, and chaos 
is experimentally verified at the neutron separation energy. The chaoticity implies 
similar behavior of all nuclei concerning fluctuation properties. However, strong 
structure effects are present in other observables, as is seen in Fig. 2 where we 
show experimental level densities at the neutron separation energy, or more specif
ically, the inverse l/D of the mean spacing of observed resonances (data from7 

) . 

Strong shell effects with deep minima appear at shell closures , corresponding to 
neutron numbers, N=50, 82 and 126. The observed level density varies by more 
than six orders of magnitude. There is also a general increase of the level density 
with increasing mass number: on the average one expects that the level density is 
proportional the mass number A. 

A new microscopic model for the level-density function is presented inl. Here 
we discuss some new results from this extensive study. In a similar way as dis
cussed above, excited states are calculated as many-particle-many-hole excitations 
in the deformed mean field, with wave functions and energies given by Eqs.(l) and 
(2) . The deformed mean field is obtained from8 , where all parameters, including 
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Fig. 2. Experimental level density at the neutron separation energy plotted as a function of the 
neutron number. 

equilibrium deformations, are given. All np-nh states with n < 10 are included for 
protons as well as for neutrons , which are then combined to form total many-body 
states and ordered in energy. Pairing is included by performing a blocked BCS cal
culation for each many-body state, which provides a unique pairing gap for each 
state. This allows us, for example, to study either individual or average pairing gaps 
as functions of excitation energyl. In this model each state is specified by the en
ergy, EJ.< = EJ.« v, K, To, 6.n , 6.p ) (corrected for the pairing interaction) , the seniority 
(v=vp+vn ), the K quantum number, the parity and the pairing gaps (cf. Eq.(2)). 

To show how the level density is built up from the many-particle-many-hole 
excitations, we show in Fig. 3 the level density for seniorities, v=2, 4, 6 and 8, as 
functions of excitation energy. The figure is plotted in log-log scale. A significant 
result is that the different seniority level densities depend on excitation energy as, 
Pv ex E ;::c ' The powers (Xv are systematically larger than the estimate from the 
Fermi-gas model, (Xv = v - 1, namely rather like (Xv = 1.6v - 1. The difference can 
be understood from , on the average, larger energy distances in the s.p. spectrum 
around the Fermi surface than for states away from the Fermi surface (cf. Ref.9 ). 

All states have been calculated as excitations in the mean field Hamiltonian. 
The ground-state deformation is assumed for all states, while the pair gaps are 
calculated self-consistently. As discussed in section 2 the residual interaction plays 
a most important role as the main cause of quantum chaos in the many-body system. 
In calculating the level-density function the residual interaction may be included 
as well. We shall consider two consequences of inclusion of the residual interaction. 
The first arises when we follow the lines described in section 2. A generic residual 
interaction creates a mixture of many-body states (Eq.( 4)) on some energy scale and 
may cause chaos. This part of the interaction is not expected to create any structural 
changes, but its role is mainly to smear out the individual character of many-body 
wave functions and energies on some energy scale. The effects from the interaction 
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Fig. 3. Seniority level-density functions for I72Yb (log-log scale) for v=2 (short-dashed line), 4 
(dot-dashed line), 6 (long-dashed line) and 8 (dot-dot-dashed line) . The total level density is shown 
as a thick, solid line. 

can thus be taken into account by simply assuming that each state is smeared out 
with a damping with given by Eq.(5) , that is estimated asl6 f" = 0.05E~{; / .,fA 
MeV. 

Inclusion of long-range interactions provides the second consequence of the resid
ual two-body interaction. This gives rise to vibrational excitations, including gi
ant resonances, and we shall consider effects on the level density from a residual 
quadrupole interaction. This interaction gives rise to specific vibrational correla
tions, and provides a microscopic approach to the calculation of vibrational en
hancements of the level density. Energies and wave functions of the phonons are 
obtained by solving the quasi-particle Tamm-Dancoff equations (QTDA) for each 

calculated state, see Ref.l . At present , we include quadrupole phonons only and 
assume a separable QQ-interaction where operators and coupling constants are 
chosen from the self consistency conditions lO . The two Tamm-Dancoff equations 
corresponding to /3- (K=O) and , -vibrations (K=2) are solved. To the level-density 
function we thus add the quadrupole vibrational states (phonons) built on each 
many-body state, properly accounting for angular momentum coupling. In order 
not to double-count levels, qp-states building up the phonons are removed from 
the level-density function , with a weight given by the wave function component. 
By comparing level-density functions obtained with and without the inclusion of 
quadrupole phonons, we obtain a microscopic measure of the vibrational enhance
ment. In Fig. 4 the vibrational enhancement is shown versus excitation energy for 
172Yb. The effect is completely ignorable. And considerably smaller than the vi
brational enhancement in the attenuated phonon model12 (inset in Fig. 4) , that 
is commonly employed in level-density calculations, see e.g. Refl3. Systematically, 
the vibrational enhancement factor around the neutron separation energy varies be
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Fig. 4. Microscopically calculated vibrational enhancement for t 72Yb. The inset shows vibrational 
enhancement from the attenuated phonon model 12 . 

tween 1 and 1.2 in the present approach l
. The reason why the effect is so small is the 

way the wave functions of the phonons are constructed. In the QTDA the phonon 
states are built as sums of correlated particle-hole excitations. While phonons corre
sponding to the giant resonances obtain strength from states with ph-energies quite 
different from the phonon energy, the wave-functions of the low-lying vibrational 
states consist of ph-components which are fairly close in energy to the energy of 
the phonon state. Therefore, the increase in level density obtained by including the 
phonons is small. 

In addition, in the present approach the calculated quadrupole phonons are 
not allowed to be repeated. On the other hand, in the attenuated phonon model 
quadrupole (and octupole) phonons are treated as non-interacting phonons that 
are allowed to be repeated several times. Clearly, such an approach may give rise 
to problems with the Pauli principle, and may imply a double counting of states. 

Deformed nuclei can rotate. We explicitly include this excitation mode in the 
model. In building rotational states we employ the calculated equilibrium deforma
tion, and pairing gaps through the moment of inertia function, J(E:, ~p, ~n). The 
moment of inertia is calculated from a simple schematic expression l4 that depends 
on the pairing gaps as well as on the deformation. Consequently rotational band 
is built on each calculated (bandhead) state, E,.(v, K , 7r, ~n , ~p) that has a spec
ified K-quantum number and parity, and with the moment of inertia depending 
from the calculated pairing gaps. The energy of this band is simply taken from the 
deformed-rotor model, 

1(1 + 1) - K2 
(6)Er ot (1 , K , 7r) = 2J(E:, ~p, ~n) + E"" 

where 1 is the total angular momentum and E,• is the bandhead energy. This way 
of including rotation certainly contains an element of double counting levels. At the 

I 
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Fig. 5. Rotational enhancement of level density of 162Dy. The upper curve shows t he enhancement 
if pairing is neglected. 

excitation energies considered here (up to the neutron resonance region) we believe, 
however this effect to be small 15 . 

The effect of including rotational states on the level-density function is shown 
in Fig. 5. At low excitation energies, Ex < 3 MeV, the rotational enhancement 
increases rather drastically, while a smaller increase is seen for higher excitation 
energies. At the neutron separation energy the rotational enhancement factor is 
in the range 5- 6 for 162Dy. If pairing is neglected all moments of inertia are de
scribed by the rigid-body value and energies are not pairing correlated. In general 
this implies a slightly la rger rotational enhancement, with the largest effect at low 
excitation energies. 

The level-density function as a function of the excitation energy, from the 
ground-state region to the neutron resonance region , has been measured for a few 
nuclei17. In Fig. 6 measured and calculated level-density functions are compared 
for 172Yb. The agreement is good, in particular considering that no model param
eters are fitted to experiment. We also show effects on the total level density if 
rotations/ vibrations are excluded, or if pairing is excluded. 

In the Fermi-gas model the positive and negative parities have the same density 
of states, R = p_ {Ex)/p+{Ex) = 1. In Fig. 7 the level-density functions for negative 
and positive parities, as obtained from the microscopic combinatorial method , are 
shown versus excitation energy for the nucleus 79Cu. The negative-parity states 
completely dominate the level density up to about 15 MeV. In fact , the ratio reaches 
values of about R ~ 100 at around 5 MeV excitat ion energy! 

The isotope 79Cu has a quite large neutron-proton ratio with N = 50 neutrons 
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Fig. 6. Level density for 172Yb as obtained in the microscopic model (solid line) is compared to 
experimental data from the Oslo groupl7 (circles connected by lines) . Excluding pairing (dot
dashed line) overestimates the level density, while excluding collective enhancements (rotations 
and vibrations) , shown by a dashed line, gives underestimates of tbe level density. 
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Fig. 7. Total level density for 79Cu and tbe positive and negative parity components. 

and Z = 29 protons. Due to the neutron number , which corresponds to a magic 
number, and a proton number being just one particle beyond the Z = 28 shell 
closure, the nucleus has almost spherical shape, c = 0.05. Below the N = 50 gap 
is the 99/2 shell and just above are the 97/ 2 and d5 / 2 shells, which all have positive 
parity. Consequently, most neutron excitations will keep the parity unchanged. The 
proton Fermi surface is in the center of the fp-shell with j-shells corresponding 
to negative parity, and most proton excitations will remain in the fp-shell , where 
the odd particle determines the parity as negative . This implies that most excited 
states of the combined system have negative parity, explaining the huge size of the 



9 

ovember 10, 2008 22:32 WSPC/INSTRUCTION FILE Polen·subm 

enhancement of negative parity in the level density. Not until we reach excitation 
energies of about 20 MeV will the parity ratio approach the normal, R ~l. 
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