Electrochemical and XRD characterization of platinum-ruthenium blacks for DMFC anodes.

PDF Version Also Available for Download.

Description

It is generally accepted that Pt-Ru alloy catalysts with an atomic Pt-to-Ru ratio of 1:1 generate the best anode perform'ance in the direct methanol fuel cell (DMFG). However, at near-ambient cell operating temperatures, Gasteiger et al. reported that a catalyst with significantly lower Ru content, {approx} 10 at %, offers the highest activity towards methanol. Recently, Dinh et al. demonstrated that the activity of different Pt-Ru catalysts with the same Pt-to-Ru atomic ratio in the bulk might vary depending on the actual surface composition, which is often significantly different from that in the bulk phase, In this work, we study ... continued below

Creation Information

Eickes, C. (Christian); Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.); Purdy, G. M. (Geraldine M.); Zelenay, P. (Piotr); Morita, T. (Takanari) et al. January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 45 times , with 5 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

It is generally accepted that Pt-Ru alloy catalysts with an atomic Pt-to-Ru ratio of 1:1 generate the best anode perform'ance in the direct methanol fuel cell (DMFG). However, at near-ambient cell operating temperatures, Gasteiger et al. reported that a catalyst with significantly lower Ru content, {approx} 10 at %, offers the highest activity towards methanol. Recently, Dinh et al. demonstrated that the activity of different Pt-Ru catalysts with the same Pt-to-Ru atomic ratio in the bulk might vary depending on the actual surface composition, which is often significantly different from that in the bulk phase, In this work, we study several experimental Pt-Ru catalysts (Johnson Matthey) with Pt-to-Ru atomic ratio ranging from 9: 1 to 1 :2. Electrocatalytic activity of these catalysts in methanol oxidation reaction is investigated in a regular DMFC 'and probed using voltammetric stripping of surhce CO.

Source

  • Submitted to: Third International Symposium on Proton Conducting Membrane Fuel Cells, 202nd Meeting of the Electrochemical Society in Salt Lake City, UT, from October 20-25, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-5829
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976346
  • Archival Resource Key: ark:/67531/metadc927278

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 5:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 45

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Eickes, C. (Christian); Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.); Purdy, G. M. (Geraldine M.); Zelenay, P. (Piotr); Morita, T. (Takanari) et al. Electrochemical and XRD characterization of platinum-ruthenium blacks for DMFC anodes., article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc927278/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.