FREE STANDING NANOSTRUCTURED ANODES FOR LI-ION RECHARGEABLE BATTERIES

PDF Version Also Available for Download.

Description

The free standing nanorodes of aluminum and cobalt oxides were grown on electrode and tested as the anodes directly in the half-cell. The average diameter and length of the nanorods are 80 nm and 200 nm respectively. The aligned nanorods demonstrated high initial capacity from 1200-1400 mAh/g at rate of 0.5C. The gradually decrease of initial capacity was observed. The preliminary characterization shows that the changes of the crystalline structure and morphology during cycling may be responsible for the capacity decay.

Physical Description

59

Creation Information

Au, M. July 20, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The free standing nanorodes of aluminum and cobalt oxides were grown on electrode and tested as the anodes directly in the half-cell. The average diameter and length of the nanorods are 80 nm and 200 nm respectively. The aligned nanorods demonstrated high initial capacity from 1200-1400 mAh/g at rate of 0.5C. The gradually decrease of initial capacity was observed. The preliminary characterization shows that the changes of the crystalline structure and morphology during cycling may be responsible for the capacity decay.

Physical Description

59

Notes

available

Source

  • Journal Name: ECS Transactions

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SRNL-STI-2009-00462
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.1149/1.3247066 | External Link
  • Office of Scientific & Technical Information Report Number: 960214
  • Archival Resource Key: ark:/67531/metadc927243

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Au, M. FREE STANDING NANOSTRUCTURED ANODES FOR LI-ION RECHARGEABLE BATTERIES, article, July 20, 2009; South Carolina. (digital.library.unt.edu/ark:/67531/metadc927243/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.