Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

PDF Version Also Available for Download.

Description

An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value ... continued below

Creation Information

Sohal, M.S.; O'Brien, J.E.; Stoots, C.M.; Hartvigsen, J. J.; Larsen, D.; Elangovan, S. et al. May 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple phase boundary) • Loss of electrical/ionic conductivity of electrolyte.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-09-16004
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/961923 | External Link
  • Office of Scientific & Technical Information Report Number: 961923
  • Archival Resource Key: ark:/67531/metadc927192

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 2:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sohal, M.S.; O'Brien, J.E.; Stoots, C.M.; Hartvigsen, J. J.; Larsen, D.; Elangovan, S. et al. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis, report, May 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc927192/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.