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Abstract The structure of deuterated jarosite, KFe3(S04)2(OD)6, was investigated using 

time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis 

reveals that with increasing temperature, its c dimension expands at a rate ~10 times 

larger than that for a. This anisotropy of thermal expansion is due to rapid increase in the 

thickness of the (001) sheet of [Fe(0,OH)6] octahedra and [S04] tetrahedra with 

increasing temperature. Fitting of the measured cell volumes yields a coefficient of 

thermal expansion, a = ao + alT, where ao = 1.01 x 10-4Kl and al = -1.15 x 10-7 K2. 

On heating, the hydrogen bonds, 01···D-03, through which the (001) octahedral­

tetrahedral sheets are held together, become weakened, as reflected by increase in the 

D···01 distance and concomitant decrease in the 03-D distance with increasing 

temperature. On further heating to 575 K, jarosite starts to decompose into 

nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the 

breaking of the hydrogen bonds that hold the jarosite structure together. 

Keywords Jarosite; Neutron diffraction; Thermal expansion; Decomposition; Hydrogen 

bonds; Crystal chemistry 
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Introduction 

Jarosite, KFe3(S04)2(OH)6, and the related sulfates, which comprise the so-called "alunite 

supergroup" (Jambor 1999), commonly occur in acid drainage environments, as the 

weathering products of sulfide ore deposits. They are found in clays as modules and 

disseminations and in acid soils, where previously existing pyrite was oxidized into 

jarosite. They can also precipitate from aqueous sulfate due to oxidation ofH2S in 

epithermal environments and hot springs associated with volcanic activities (Papike et al. 

2006). In 2004, jarosite was detected by the Mars Exploration Rover (MER) M6ssbauer 

spectrometer (KlingelhOfer et al. 2004), which has been interpreted as strong evidence for 

the occurrence of large amounts of water (and possibly life) in the history of Mars. A 

recent study using laser desorption Fourier transfonn mass spectrometry revealed the 

presence of organic matters (such as glycine) in several jarosite samples (Kotler et al. 

2008), thereby validating the hypothesis of possible existence of life on Mars. 

In addition to its geological importance, jarosite is of considerable interest for its 

industrial applications (Dutrizac and Jambor 2000). Specifically, in the zinc industry, Zn 

is usually extracted from Zn-sulfides (such as sphalerite) by the so-called "roast-l each­

electrolysis" process. However, these sulfides commonly contain Fe, typically 5 to 12 

wt%, which needs to be removed. Precipitation of jarosite compounds has been found to 

be an effective means for the Fe removal, as they fonn quickly and are readily filterable 

and washable. This process operates at atmospheric pressure, rather than requiring an 

autoclave as for many hydrothermal processes, and is thus economical. Furthermore, the 

generated jarosite (in the form of mud) can be combined with other industrial wastes such 

as dump ferrous slag (DFS) and alkaline AI-surface cleaning waste (ASCW) as well as 
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small portions of Portland cement or lime to produce materials for construction 

applications (such as airfield runways and levee cores) (Mymrin et al. 2005). In addition, 

jarosite and its associated alunite-type phases have been proposed as potential hosts for 

the long-term immobilization of radioactive fission products and toxic heavy metals 

(Ballhorn et al. 1989; Kolitsch et al. 1999). 

The structure ofjarosite consists of [S04] tetrahedra and distorted [Fe(O,OH)6] 

octahedra with K located in a 12-fold coordinated site (space group R"3 m) (Fig. 1A) 

(Menchetti and Sabelli 1976; Stoffregen et al. 2000; Basciano and Peterson 2007). Each 

[Fe(O,OH)6] octahedron comer-shares four hydroxyl groups with neighboring 

[Fe(O,OH)6] octahedra and two oxygen atoms from two [S04] tetrahedra (one above the 

Fe and one below), forming (001) sheets of [Fe(O,OH)6] and [S04] perpendicular to the c 

axis. There are two types of crystallographically distinct [S04] tetrahedra: one [S04] 

pointing upward along c (c+), and the other [S04] pointing downward (c-), which 

alternate zigzagly along the a-axes within the (001) layer (Fig. 1 B). Each K is 

coordinated by 6 °atoms from [S04] tetrahedra and 6 OH groups from [Fe(O,OH)6] 

octahedra. All 6 °atoms and all 6 OH groups are symmetrically identical, and thus the K 

site has a highly symmetrical coordination with 6 identical K-OH bonds and 6 identical 

K-O bonds (Papike et al. 2006). 

The unique distribution of [Fe(O,OH)6] octahedra within the (00l) layer coupled 

with the magnetic properties of Fe3 
+ makes jarosite a model compound for studying the 

spin frustration in two-dimensional kagome lattices (composed ofmagnetic ions located 

at comers of triangles that are linked via comer-sharing) (Wills et al. 2000). Low­

temperature neutron diffraction experiments reveal that jarosite exhibits long-range 
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magnetic ordering when cooled down below 65 K, as evidenced by the appearance of 

several magnetic reflections at hkll2, I = odd (Inami et al. 2000). The c-dimension of the 

magnetic unit cell is twice that of the conventional unit cell, and the magnetic structure 

belongs to the so-called "q = 0, 1200 type" with triangles of the spins having only positive 

chirality (Inami et al. 2000). The magnetic ordering is interpreted as a result of the 

coupling between the jarosite (001) layers exhibiting a net magnetization, which is 

mainly due to Dzyaloshinsky-Moriya (DM) anisotropic interactions (Grohol et al. 2003; 

Yildirim and Harris 2006). 

Despite the detailed structural studies ofjarosite at room and low temperatures, no 

information is available about its high-temperature structural behavior. The recent 

discovery of jarosite on Mars has spurred interests in its stability at various temperature, 

pressure and aqueous conditions (such as its pH). A number of thermochemical studies of 

jarosite and its analogues have been performed to determine their decomposition 

temperatures, enthalpies of formation, and enthalpies of dehydroxylation (Drouet and 

Navrotsky 2003; Drouet et al. 2004; Forray et al. 2005; Frost et al. 2005; Navrotsky et al. 

2005). However, structural information for jarosite corresponding to its thermal behavior 

is still lacking. In particular, its coefficients and mechanisms of thermal expansion remain 

unknown. Since the high-temperature structural behavior ofjarosite is likely to be related 

to changes in its hydroxyl behavior and since neutron scattering is sensitive to the 

position of hydrogen (and its isotopes), high-temperature neutron diffraction studies are 

particularly useful to unravel the mechanisms of its thermal expansion and 

decomposition. 
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In this study, we carried out in situ neutron diffraction ofjarosite using a pulsed 

neutron source at temperatures up to 650 K (the sample started to decompose into 

yavapaiite KFe(S04h, hematite Fe203 and water vapor D20 between 550 K and 575 K). 

To avoid the large incoherent scattering of neutrons by hydrogen, we synthesized 

deuterated jarosite, KFe3(S04h(OD)6, using hydrothermal methods. Rietveld analysis of 

the time-of-flight neutron data allowed determination of structural parameters as a 

function of temperature. In particular, the atomic positions and atomic displacement 

parameters ofjarosite at high temperatures have been obtained for the first time, and the 

structural effects on jarosite thermal expansion and stability are discussed. 

Experimental methods 

Sample synthesis 

The jarosite sample used in this study was prepared via hydrothermal methods. First, 8.1 

g ofFe(N03k9D20 (20 mmol) and 3.5 g ofK2S04were dissolved separately in 25 mL 

D20. Second, the two solutions were mixed and stirred thoroughly in a 100 mL Teflon 

cup, which was then placed in a standard Parr autoclave. Third, the autoclave was sealed 

and heated at 433 K for 3 days. After cooling down to room temperature, the autoclave 

was opened, and the content filtered and washed with cold D20. Lastly, the resulted solid 

product was dried in air for one hour, placed in a vacuum oven at 383 K overnight and 

then stored in a desiccator. The product, a brown, well-crystallized powder, was 

confirmed to be single-phase jarosite by powder X-ray diffraction (Rigaku Ultima III, 40 

keY, 50 rnA, CuKaradiation). The K, Fe and S contents of the sample were measured by 

inductively coupled plasma atomic emission (ICP-AE) spectroscopy. The determined 
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weight concentrations are 7.66% K, 35.0% Fe and 12.6% S. These values are very close 

to the stoichiometric compositions of7.81 % K, 33.4% Fe and 12.8% S 

KFe3(S04)2(OD)6, respectively. Thus in the following structural analysis, we treated the 

sample as having the ideal formula. 

Neutron diffraction 

Time-of-flight neutron diffraction experiments were performed at the High-Pressure 

Preferred Orientation (HiPPO) beamline ofthe Manuel Lujan, Jr. Neutron Scattering 

Center, Los Alamos National Laboratory. Sample powders were placed in a vanadium 

can 0.95 cm in diameter, and the can was mounted in an ILL-type high-temperature 

furnace with vanadium heating elements and heatshields for contamination-free 

diffraction data collection (Vogel et al. 2004). Data were collected under vacuum at room 

temperature and at temperatures from 350 to 650 K with an interval of 25 K. For each 

temperature point, three detector banks with nominal diffraction angles of 40°,900 and 

1400 were simultaneously used. The heating rate was 5 KJmin, and the dwell time at each 

targeted temperature (including an equilibration time of 5 min) was ~ 4 h. 

Structure refinement 

The neutron data were analyzed using the Rietveld method with the General Structure 

Analysis System (GSAS) program of Larson and Von Dreele (2000). The starting 

structural parameters for KFe3(S04)2(OD)6 at 298 K were taken from the neutron 

diffraction study of Menchetti and Sabelli (1976). We then used the refined structural 

parameters at 298 K as the starting parameters for the next highest temperature and 
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continued this procedure systematically with increasing temperature. For the runs at 575 

K and 600 K, since a portion of the sample decomposed into yavapaiite, hematite and 

water vapor, we included yavapaiite and hematite as secondary phases in the Rietveld 

analyses. The starting structural parameters for yavapaiite and hematite were taken from 

the X-ray diffraction studies of Anthony et al. (1972) and Maslen et al. (1994), 

respectively. For the two highest temperature runs (625 and 650 K), only yavapaiite and 

hematite were present, and thus jarosite was excluded from the analyses. For each 

temperature point, two datasets from the detectors at 28 = 90° and 140° were 

simultaneously analyzed (the 40° dataset was not used because of its relatively low 

resolution). The refinements proceeded as follows: after the scale factor and four 

background terms (Shifted Chebyshev function) for each histogram had converged, 

lattice parameters and phase fractions (for the runs at 575, 600, 625 and 650 K) were 

added and optimized. Fourteen or eighteen additional background terms were then added 

for each histogram, and the peak profiles were fitted to a TOF profile function (Von 

Dreele et al. 1982). On convergence of the preceding parameters, atomic coordinates and 

isotropic atomic displacement parameters for K, Fe, S, 0, and D were refined, yielding 

Rwp values ranging from 1.33% to 1.43% and Rp from 0.87% to 0.98% (Table 1). The 

obtained unit-cell parameters, atomic coordinates, atomic displacement parameters, and 

selected bond parameters are listed in Tables 1-4, respectively. A representative pair of 

fitted patterns is plotted in Figure 2. 

Results and discussion 

Stability ofjarosite 
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Our high-temperature neutron diffraction patterns indicate that the deuterated jarosite 

sample was stable up to 550 K. However, it started to decompose into yavapaiite, 

hematite and D20 vapor when the temperature reached 575 K: 

KFe3(S04h(OD)6 ~ KFe(S04h + Fe203 + 3D20 (1) 

As shown in Figure 3, at 575 K, new diffraction peaks indicative ofyavapaiite and 

hematite appeared, and the molar ratio, jarosite: yavapaiite: hematite, obtained from 

Rietveld analysis was 74.8:12.6: 12.6. When the temperature was increased to 600 K, 

these new peaks grew, and more obviously, the original jarosite peaks (such as 003) 

became significantly weaker. The obtained molar ratio, jarosite: yavapaiite: hematite, at 

600 K was 28.6:35.7:35.7. With further increasing temperature to 625 K, jarosite 

decomposed completely, as reflected by the disappearance of its diffraction peaks, and 

only yavapaiite and hematite were present. Thus the onset temperature of the jarosite 

dehydroxylation (Td) lies between 550 and 575 K. This is generally consistent with 

previous thermal analyses of potassium jarosite, which show that the mass loss due to the 

dehydroxylation occurs in the temperature range 403-603 K (Frost et al. 2005). On the 

other hand, as in other hydroxyl-containing compounds such as portlandite (Xu et al. 

2007), the measured dehydroxylation temperature can vary with sample purity, sample 

crystallinity and experimental conditions such as heating rate and water vapor pressure. 

These factors may account for some of the discrepancies in the reported T d values for 

jarosite (Frost et al. 2005; Drouet and Navrotsky 2003). 

Note that the overall intensities of the patterns at 600 and 625 K are much weaker 

than those at lower temperatures (Fig. 3). More specifically, diffraction peaks for the 

newly formed phases, yavapaiite and hematite, are broad and not well resolved. This 
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behavior suggests that these phases are probably nanocrystalline in nature, presumably 

due to the relatively low temperatures of their fonnation. Similar behavior has been 

observed in simple hydroxides such as brucite [Mg(OH)2], where nanocrystalline MgO 

forms upon brucite dehydroxylation at 600 K (Sharma et aI. 2004). 

Thermal expansion 

Although jarosite has a trigonal symmetry (space group R '3 m), its structure is 

conventionally treated in tenns of a hexagonal cell (defined by two unit-cell parameters a 

and c). On heating, both a and c increase, and thus cell volume V also increases (Fig. 4). 

However, as shown in Figures 4A and 4B (plotted on the same scale), the structural 

expansion ofjarosite occurs at a much higher rate along the c-axis than along the a-axis 

and is thus highly anisotropic, which is consistent with the layered nature of its structure. 

To obtain the mean coefficients of thermal expansion (CTEs), we fitted the cell­

parameter data to linear relations: 

a = 7.2818 + 2.9756 x 1O-5r (2) 

c = 16.9810 + 7.2339 x lO-4r (3) 

779.727 + 3.9835 x 10-2r (4) 

The derived mean CTEs ofKFe3(S04)(OD)6 in the temperature range 298-575 K are: aa 

= 4.0814 x 10-6K-1
; CXc 4.2066 x 10-5 K-1

; and av 5.0322 x 10-5 K-1
. Thus the c-axis 

expands -10 times more rapidly than the a-axis with increasing temperature. 

The cell volume data can also be fitted to a more general equation for thennal 

expansion: 

VeT) Voexp[Ia(T)dT] (5) 
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where V () is the volume at a chosen reference temperature, To, and aCT) is the thermal 

expansion coefficient, having the form: 

aCT) ao + (6) 

Using To = 298 K, the fit yielded the following parameters: Vo = 790.99 A3
, ao = LUI x 

10-4 K\ and a] -1.15 x 10-7 K-2. This fit is excellent, as indicated by an R2 value of 

0.995 and that the refined Vo is approximately the same as the measured Vo (791.28 A3
). 

To the best of our knowledge, the obtained CTEs represent the first measurement 

of thermal expansion for jarosite and its related alunite group. The av value of 5.0322 x 

10-5 K-1 falls within the av range for common compounds. However, it is significantly 

smaller than the av values of many other hydroxyl-bearing minerals with a layered 

structure. For example, brucite, Mg(OHh, has an av of 10.9 x 10-5 K-1 (Redfern and 

Wood 1992), about two times that ofjarosite. On the other hand, like brucite, jarosite 

exhibits large anisotropy in axial thermal expansion with a much higher CTE along the c 

axis (normal to the layer) than perpendicular to c. As detailed below, the thermal 

behavior ofjarosite is due to the corresponding changes in its bonding parameters with 

increasing temperature. 

Structural variation 

Figure 5 shows variation of isotropic displacement factors (Uzso) ofK, Fe, S, 0 and D 

with temperature. As expected, for a given element, its Uiso increases with increasing 

temperature. At a given temperature, Uiso(Fe) < Uzso(S) ~ Uiso(O) < Uiso(D) ~ Uiso(K). 

These trends are consistent with the decreased bond strengths from Fe to S/O to D/K 

(with their neighboring atoms), as U (= kT/f, where k is the Boltzman constant, T absolute 
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temperature, andfthe bond force constant) is inversely proportional to the bond force 

constant. Generally, the lighter the element, the weaker the bond strength and thus the 

larger the Viso. However, exceptions do occur, depending on the bonding configuration of 

a given atom in the structure. In jarosite, K is situated between the (001) 

[Fe(0,OH)6]/[S04] sheets (Fig. 1A) and thus has relatively weaker electrostatic 

interactions with its adjacent 0 and OD. As a result, K has similarly high values to 

D, although it is much heavier. 

As describe above, the jarosite structure is based on (001) sheets of [Fe(0,OH)6] 

octahedra and [S04] tetrahedra (Fig. 1A). [Fe(0,OH)6] octahedra are linked via corner-

sharing, forming six- and three-membered rings perpendicular to the c-axis (Fig. 1B). 

Each three-membered [Fe(0,OH)6] ring is connected to one [S04] tetrahedron through 

one of the two sets of apical vertices, and neighboring [S04] tetrahedra point to opposite 

directions (c+ or c-). Therefore, among the four 0 atoms in a [S04] tetrahedron, three of 

them (02) are each shared by one S and one Fe, but the fourth 0 (01) is bonded only to 

one S (Fig. 1 C). Since 01 is underbonded relative to 02, the s-o1 distance is expected to 

be shorter than S-02; structure refinement ofjarosite at room temperature shows that its 

S-Ol and S-02 distances are 1.437 and 1.479 A, respectively. These values fall within 

the observed s-o distances for 112 refined sulfate structures, which vary from 1.394 to 

1.578 A (Hawthorne et al. 2000). However, the S-02 value of 1.479 A is very close to the 

grand mean s-o distance, 1.473 A, calculated from the 112 sulfate structures, whereas S­

Ol is significantly lower. This observation can be explained using a formal charge model 

that was initially developed to explain local structures in alkaline-earth boroaluminates 

(Bunker et al. 1991). In this model, only network-forming cations are considered. The 
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charge donated by different cations is taken to be the cation charge divided by the cation 

coordination number, as in Pauling's second rule (Pauling 1960) and Brown and 

Shannon's treatment ofbond strengths (Brown and Shannon 1973). In the case of 

jarosite; each S6+ cation donates a charge of+6/4 (or + 1.5), and each donates a 

charge of+316 (or +0.5). Because 02 is bonded to one S6+ and one Fe3+, it has a net 

charge of zero, resulting in a typical s-o distance associated with 02. On the other hand, 

as 01 is bonded only to one S6+, it receives a charge of + 1.5 and has a net charge of -0.5. I,' 

To compensate for this charge deficiency, S-OI bond needs to be strengthened, thereby 

causing the contraction of S-O 1. 

With increasing temperature, S-Ol increases from 1.437 Aat 298 K to 1.474 Aat 

575 K (Table 4). This behavior is consistent with the larger thermal expansion of the c-

dimension, as S-Ol is parallel to the c-axis (Fig. 1 C). On the other hand, S-02 decreases 

from 1.479 A at 298 K to 1.458 A at 575 K. This S-02 shortening can be explained in 

terms of [Fe(0,OH)6] octahedral tilting. On heating, the Fe-03-Fe angle becomes smaller 

(from 133.770 at 298 K to 133:5J 0 at 575 K, Table 4). Since each [S04] tetrahedron 

shares three 02 atoms with a three-membered [Fe(0,OH)6] ring (one 02 from each 

[Fe(0,OH)6] octahedron) (Fig. lB), the narrowing of Fe-03-Fe effectively decreases the 

02-02 distance of the [S04] tetrahedron, which causes shortening of the S-02 bond. 

Moreover, as shown in Fig. lA, [Fe(0,OH)6J octahedral layers are puckered, rather than 

being flat planar (which would correspond to a Fe-03-Fe angle of 180°). Thus the 

decrease in the Fe-03-Fe angle results in an increase in the degree of the (001) layer 

puckering via octahedral tilting. As a result, the overall structure expands along the c-axis 

but contracts parallel to the (001) plane. On the other hand, individual [Fe(0,OH)6] 
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octahedra expand increasing temperature, as reflected by the larger Fe-02 and Fe­

03 distances. This causes expansion of the structure along both a- and c-axis. It appears 

that the net increase in a resulting from the thermal expansion of [Fe(O,OH)6] octahedra 

is largely canceled by the decrease due to the octahedral layer puckering, and thus a only 

shows a slight expansion. By contrast, both octahedral expansion and tilting contribute to 

the structural expansion along the c-axis, which, together with the S-Ollengthening, 

leads to a much larger expansion along c. 

Although jarosite exhibits a larger thermal expansion along the c axis (normal to 

the layer) than along a, as observed in other hydrous minerals a layered structure, its 

volume expansion coefficient (av) is significantly smaller. In other words, the overall 

jarosite structure is less flexible in terms of expansion at elevated temperatures. This 

behavior can be interpreted on the basis of its unique structural characteristics. For many 

layered hydrous minerals (such as brucite [Mg(OH)2]), their structures can be treated as 

consisting of a structural layer (e.g., the [Mg06] layer in brucite) and the interlayer in 

which weak bonds (e.g., van der Waals forces) are operating. Thus the thermal expansion 

of these layered structures is due to that ofboth the structural layer andinterlayer, where 

the latter typically plays a more significant role. In contrast, the jarosite structure is 

comprised only of layers of [Fe(0,OH)6] octahedra and [S04] tetrahedra (Fig. 1 A), 

lacking a distinct interlayer as in other hydrous structures. The absence of the interlayer is 

due to the constraint that neighboring [S04] tetrahedra linked to different [Fe(0,OH)6] 

octahedra layers must have the same height along the c-axis (Fig. lA); there is only one 

crystallographically distinct S in the unit cell ofjarosite. Hence, the thermal expansion of 
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jarosite is detennined solely by the flexibility of its [Fe(0,OH)6]/[804] sheets, resulting 

in a smaller av compared with those ofother layered hydrous compounds. 

Despite the absence of a distinct weak-bonding interlayer in jarosite, the sheets of 

[Fe(0,OH)6] and [804] polyhedra are held together by the interstitial K+ cation via the K­

02 and K-03 bonds and the hydrogen bonding between 01 and D, 01"'D-03 (Fig. IC). 

As in other layered hydrous structures, these bonds are weaker than the bonds within the 

octahedral/tetrahedral sheets. As a result, the K-02, K-03 and D···OI distances exhibit 

relatively larger increases with increasing temperature (Table 4). In particular, the D···OI 

attraction, which operates between a given D (or H) and its closest 01 from the [804J 

tetrahedron of the neighboring [Fe(0,OH)6]/[804] sheet (Fig. IC), becomes weakened, as 

manifested by the increase in D···Ol distance (Fig. 6A). In contrast, the 03-D bond 

length shows decreases on heating (Fig. 6B), suggesting that the 03-D bond becomes 

somewhat stronger. In other words, in the 01"'D-03 bonding configuration, with 

increasing temperature, the 03 atoms pull the D closer, thereby effectively weakening the 

D···Ol attraction. Hence, the interatomic interactions ofD with its neighboring 0 atoms 

are interdependent and are largely driven by the thermal motion ofD at elevated 

temperatures. 

Mechanism of jarosite decomposition 

It is conceivable that the stability ofjarosite is dictated by the stability of the hydrogen 

bond, 01'''D-03, as it, along with K+, holds the structural sheets of [Fe(0,OH)6] 

octahedra and [804] tetrahedra together. Once this hydrogen bond is broken due to high­

temperature dehydroxylation, the jarosite structure disintegrates into yavapaiite, hematite 
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and water vapor. More specifically, [Fe(O,OH)6] octahedra become [Fe06] octahedra 

after dehydroxylation, and one third ofthe [Fe06] octahedra combine with [S04] 

tetrahedra, via comer-sharing, forming [Fe(S04)2] sheets parallel to the (001) plane. 

These sheets are linked together by interstitial 10-coordinated K+, resulting in a layered 

compound, yavapaiite. In the mean time, the remaining two thirds of the [F e06] 

octahedra are connected via edge-sharing to form gibbsite-type octahedral layers, and the 

latter are stacked, via face-sharing, along the c-axis, forming hematite. Given the 

structural relations among jarosite, yavapaiite and hematite, there may be certain 

topotactic relations between the decomposed jarosite and newly formed yavapaiite and 

hematite. Specifically, the layered nature of all the three phases may result in the 

following relation: (00 I )jarosite II (001 )yavapaiite II (001 )hematite or Cjarosite II Cyavapaiite II Chematitc. 

This type of topotactic reaction (i.e., structurally controlled) mechanism has been found 

responsible for the thermal decomposition ofmany minerals including hydroxides, 

oxyhydroxides and carbonates (Sharma et al. 2004; Floquet and Niepce 1978). The 

occurrence of topotactic relations among jarosite, yavapaiite and hematite, however, 

would require verification by other techniques such as high-resolution transmission 

electron microscopy. 

Conclusions 

We have studied the stability and structural behavior of deuterated jarosite in the 

temperature range 298-650 K using neutron diffraction in conjunction with Rietveld 

analysis. Our results show that jarosite is stable up to 550 K, above which it starts to 

decompose into nanocrystalline yavapaiite and hematite. With increasing temperature, 
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both the a and c dimension ofjarosite expand, the latter expands at a rate -10 times 

larger, as is consistent with the layered nature of its structure. On the other hand, because 

ofthe lack of a distinct weak-bonding interlayer between adjacent (001) sheets of 

Fe(O,OH)6] octahedra and [S04] tetrahedra, the volume expansion coefficient of jarosite 

is significantly smaller than those ofmany other hydroxyl-bearing minerals with a 

layered structure. At a given temperature, the amplitudes of thermal vibration ofD and K 

are much larger than those for Fe, 0 and S, implying their weaker bonding 

surrounding atoms. Correspondingly, on heating, the D···Ot distance of the hydrogen 

bond Ol···D-03 increases, which suggests weakened hydrogen bonding between 

neighboring (001) tetrahedral/octahedral sheets. By contrast, the 03-D bond becomes 

stronger with increasing temperature, a trend also observed in simple hydroxides such as 

portlandite. 
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Table 1 Unit-cell parameters of deuterated jarosite and 

agreement indices of the refinements 

T (K) a (A) c (A) v(A3
) Rwp (%) Rp (%) 

298 7.29013(6) 17.1921(2) 791.28(1) 1.33 0.87 

350 7.29109(6) 17.2293(2) 793.20(1) 1.33 0.87 

375 7.29275(6) 17.2514(2) 794.58(1) 1.33 0.87 

400 7.29422(6) 17.2713(2) 795.82(1) 1.33 0.88 

425 7.29541(7) 17.2916(2) 797.02(1) 1.33 0.89 

450 7.29603(7) 17.3129(3) 798.13(1) 1.35 0.92 

475 7.29644(7) 17.3316(3) 799.08(1) 1.35 0.93 

500 7.29702(7) 17.3478(3) 799.96(1) 1.42 0.97 

525 7.29759(7) 17.3632(3) 800.79(2) 1.43 0.98 

550 7.29760(8) 17.3761(3) 801.39(2) 1.42 0.96 

575 7.29775(10) 17 .3854(4) 801.85(2) 1.42 0.89 
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Table 2 Atomic coordinates ofdeuterated jarositea 

T(K) z(S) z(Ol) x(02) z(02) x(03) z(03) xeD) zeD) 

298 0.3077(2) 0.3913(1) 0.22320(7) -0.05488(5) 0.12731(7) 0.13499(6) 0.19585(8) 0.10988(5) 

350 0.3070(2) 0.3907(1) 0.22323(7) -0.05518(5) 0.12741(7) 0.13500(6) 0.19555(8) 0.10978(5) 

375 0.3066(2) 0.3904(1) 0.22338(7) -0.05532(5) 0.12746(7) 0.13504(6) 0.19533(8) 0.10971 (5) 

400 0.3061(2) 0.3901(1) 0.22339(7) -0.05547(5) 0.12751 (8) 0.13497(6) 0.19523(8) 0.1 0966(5) 

425 0.3057(2) 0.3898(1) 0.22346(7) -0.05562(5) 0.12754(8) 0.13497(7) 0.19506(8) 0.10957(6) 

450 0.3053(2) 0.3895(1) 0.22347(7) -0.05573(6) 0.12755(8) 0.13502(7) 0.19490(8) 0.10959(6) 

475 0.3051 (2) 0.3893(1) 0.22347(7) -0.05581(6) 0.12761(8) 0.13502(7) 0.19480(9) 0.10961(6) 

500 0.3045(2) 0.3889(1) 0.22349(7) -0.05581(6) 0.12765(9) 0.13491(7) 0.19467(9) 0.10967(6) 

525 0.3041(3) 0.3887(1) 0.22348(8) -0.05578(6) 0.12761 (9) 0.13492(8) 0.19449(9) 0.1 0979(6) 

550 0.3038(3) 0.3885(1) 0.22355(9) -0.05562(7) 0.1276(1) 0.13487(9) 0.1942(1) 0.11000(7) 

575 0.3035(4) 0.3883(2) 0.2236(1) -0.05566(9) 0.1276(1) 0.1349(1) 0.1941(2) 0.10994(9) 

ax(K) y(K) z(K) 0; xeS) =yeS) = 0; x(Fe) = -y(Fe) = -z(Fe) 1/6; x(Ol) y(Ol) 

0; x(02) -y(02); x(03) -y(03); xeD) = -y(D). 
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Table 3 Isotropic atomic displacement parameters ofdeuterated jarositea 

bT(K) Uiso(K) Uiso(S) Uiso(Fe) Uiso(O) Ui.w(D) 

298 2.9(1) 1.10(7) 0.83(2) 1.21(1) 2.72(3) 

350 3.0(1) 1.19(7) 0.89(2) 1.29(1) 2.89(3) 

375 3.2(1) 1.27(7) 0.94(2) 1.38(1) 3.08(3) 

400 3.4(1) 1.40(7) 1.00(2) 1.46(1) 3.22(3) 

425 3.5(1) 1.46(7) 1.05(2) 1.53(2) 3.38(3) 

450 3.70) 1.54(7) 1.09(2) 1.59(2) 3.50(4) 

475 3.8(1) 1.54(8) 1.12(2) 1.64(2) 3.59(4) 

500 3.9(1) 1.63(8) 1.18(2) 1.67(2) 3.57(4) 

525 3.8(1) 1.70(8) 1.21(2) 1.74(2) 3.60(4) 

550 3.8(1) 1.77(9) 1.26(2) 1.78(2) 3.62(4) 

575 3.9(2) 1.76(11) 1.34(3) 1.86(3) 3.60(6) 

~he unit of Uiso: A2/1 00; bThe rhso's for the three 0 atoms are set to be equal. 
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Table 4 Selected bond parameters of deuterated jarosite 

T (K) K-02(A) K-03(A) s-Ol(A) s-02(A) Fe-02(A)" Fe-03(A)b D-03(A) D"'Ol(A) Fe-03-Fen 

298 2.9721(8) 2.823(1) 1.437(3) 1.479(1) 2.0501(9) 1.9815(4) 0.967(1) 1.952(1) 133.77(6) 

350 2.9751(8) 2.828(1) 1.442(3) 1.477(1) 2.0493(9) 1.9825(4) 0.964(1) 1.961(1) 133.69(6) 

375 2.9786(8) 2.832(1) 1.447(3) 1.474(1) 2.0501(9) 1.9831(4) 0.962(1) 1.966(1) 133.67(6) 

400 2.9805(8) 2.834(1) 1.450(3) 1.472(1) 2.0499(9) 1.9841(4) 0.961(1) 1.970(1) 133.58(6) 

425 2.9830(9) 2.836(1 ) 1.454(4) 1.471(1) 2.0500(9) 1.9847(5) 0.960(1) 1.974(1) 133.55(6) 

450 2.9843(9) 2.839(1) 1.459(4) 1.469(2) 2.050(1) 1.9849(5) 0.958(1) 1.979(1) 133.55(6) 

475 2.9852(9) 2.842(1) 1.459(4) 1.468(2) 2.051(1) 1.9853(5) 0.957(1) 1.983(2) 133.51(7) 

500 2.9860(9) 2.843(1) 1.464(4) 1.465(2) 2.053(1) 1.9863(5) 0.954(1) 1.988(2) 133.40(7) 

525 2.986(1) 2.844(1) 1.469(4) 1.463(2) 2.055(1) 1.9873(5) 0.951(1) 1.993(2) 133.40(7) 

550 2.986(1) 2.845(1) 1.471(5) 1.460(2) 2.059(1) 1.9866(6) 0.946(1) 2.001(2) 133.38(8) 

575 2.987(1) 2.846(2) 1.474(6) 1.458(2) 2.060(2) 1.9866(8) 0.946(2) 2.003(2) 133.37(10) 

aAverage of two Fe-02 edges; bAverage of four Fe-03 edges. 
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Figure Captions 

Fig. 1 (A) Crystal structure ofjarosite, KFeJ(S04h(OH)6; (B) A sheet of 

[Fe(0,OH)6] octahedra and [S04] tetrahedra projected along the c-axis; 

(C) Ball-and-stick representation of the jarosite structure. Tetrahedra 

represent [S04] units, octahedra represent [Fe(0,OH)6] units, pink balls 

represent K, green balls represent Fe, brown balls represent S, blue balls 

represent 0 (light blue - 01 and 02; dark blue - 03), and red balls 

represent H. Blue lines in A and B outline the unit cell, and the dash line 

in C marks the hydrogen bond between 01 and H. In A and C, the c-axis 

of the jarosite structure is vertical. 

Fig. 2 A pair of fitted neutron diffraction patterns of deuterated jarosite collected 

at (A) 28 = 90° and (B) 28 = 140° at 298 K. Data are shown as plus signs, 

and the solid curve is the best fit to the data. Tick marks below the pattern 

show the positions of allowed reflections, and the lower curve represents 

the difference between the observed and calculated profiles. 

Fig. 3 Neutron diffraction patterns (28 = 90°) of the deuterated jarosite sample 

collected at 550K, 575 K, 600 K, and 625 K. At 575 K, jarosite started to 

decompose into yavapaiite and hematite, as evidenced by the appearance 

of their diffraction peaks (e.g., hematite 104 and yavapaiite 1111-201). The 

decomposition was completed at 625 K, as indicated by the disappearance 

ofjarosite peaks such as 003. 

Fig. 4 Variation of unit-cell parameters (A) a, (B) c, and (C) cell volume Vof 

deuterated jarosite with temperature. 
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Fig. 5 

Fig. 6 

Variation of isotropic atomic displacement parameters (Uiso) ofK, S, Fe, 0 


and D in deuterated jarosite with temperature. 


Variation of interatomic distances (A) D"'Ol and (B) 03-D in deuterated 


jarosite as a function of temperature. 
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