DARHT 2 kA Cathode Development

PDF Version Also Available for Download.

Description

In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage ... continued below

Physical Description

116

Creation Information

Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B. et al. March 9, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined all the components in the cathode region and eliminated those parts that were suspected to be potential sources of contamination, e.g., feed-throughs with zinc coating. Finally, we considered a change in the cathode type, by using a different combination of impregnation and coating. Since the ETA-II accelerator at LLNL used a 12.5 cm diameter 311XW (barium oxide doped with scandium and coated with a osmium-tungsten thin film) cathode and emitted 2200A of beam current (i.e. 18 A/cm{sup 2}), it was reasonable to assume that DARHT can adopt this type of cathode to produce 2 kA (i.e., 10A/cm{sup 2}). However, it was later found that the 311XW has a higher radiation heat loss than the 612M and therefore resulted in a maximum operating temperature (as limited by filament damage) below that required to produce the high current. With the evidence provided by systematic emission tests using quarter-inch size cathodes, we confirmed that the 311XM (doped with scandium and has a osmium-ruthenium (M) coating) had the best combination of low work function and low radiation heat loss. Subsequently a 6.5-inch diameter 311XM cathode was installed in DARHT and 2 kA beam current was obtained on June 14, 2007. In testing the quarter-inch size cathode, we found that the beam current was sensitive to the partial pressure of various gases in the vacuum chamber. Furthermore, there was a hysteresis effect on the emission as a function of temperature. The phenomenon suggested that the work function of the cathode was dependent on the dynamic equilibrium between the diffusion of the impregnated material to the surface and the contamination rate from the surrounding gas. Water vapor was found to be the worst contaminant amongst the various gases that we have tested. Our data showed that the required vacuum for emitting at 10 A/cm{sup 2} is in the low 10{sup -8} Torr range.

Physical Description

116

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-1639E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/950109 | External Link
  • Office of Scientific & Technical Information Report Number: 950109
  • Archival Resource Key: ark:/67531/metadc927058

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 9, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 3:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B. et al. DARHT 2 kA Cathode Development, report, March 9, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc927058/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.