Early Transition Metal Oxides as Catalysts: Crossing Scales from Clusters to Single Crystals to Functioning Materials

PDF Version Also Available for Download.

Description

The overall goal of this program is to investigate the electronic structure and chemical bonding of early transition metal oxide clusters and use them as well-defined molecular models to obtain insight into properties and mechanisms of oxide catalysts, as well as to provide accurate spectroscopic and molecular information to verify theoretical methods used to predict materials properties. A laser vaporization cluster source is used to produce metal oxide clusters with different sizes, structures, and compositions. Well-defined inorganic polyoxometalate clusters in solution are transported in the gas phase using electrospray. Two state-of-the-art photoelectron spectroscopy apparatuses are used to interrogate the oxide ... continued below

Creation Information

Wang, Lai-Sheng July 7, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall goal of this program is to investigate the electronic structure and chemical bonding of early transition metal oxide clusters and use them as well-defined molecular models to obtain insight into properties and mechanisms of oxide catalysts, as well as to provide accurate spectroscopic and molecular information to verify theoretical methods used to predict materials properties. A laser vaporization cluster source is used to produce metal oxide clusters with different sizes, structures, and compositions. Well-defined inorganic polyoxometalate clusters in solution are transported in the gas phase using electrospray. Two state-of-the-art photoelectron spectroscopy apparatuses are used to interrogate the oxide clusters and polyoxometalate anions in the gas phase to obtain spectroscopic and electronic structure information. The experimental effort is assisted by theoretical calculations to understanding the structures, chemical bonding, and catalytical properties of the transition metal oxide clusters. The research approach combines novel and flexible experimental techniques and advanced theoretical/computational methodologies and seeks molecular-level information to aiding the design of new catalysts, as well as mechanistic understanding. We have focused on the investigation of tungsten oxide clusters containing three W atoms: W{sub 3}O{sub x}{sup -} (x = 7-11). A number of interesting findings have been made. We observed that the oxygen-poor W{sub 3}O8 cluster contains a localized W{sup 4+} center, which can be used as a molecular model for O-deficient defect sites. A chemisorption energy was obtained through density functional calculations for W{sub 3}O8 + O{sub 2} {yields} W{sub 3}O{sub 10} as -78 kcal/mol. We further found that the neutral stoichiometric W{sub 2}O{sub 6} and W{sub 3}O{sub 9} clusters do not react with O{sub 2} and they only form physi-sorbed complexes, W{sub 2}O{sub 6}(O{sub 2}) and W{sub 3}O{sub 9}(O{sub 2}). However, the negatively charged W{sub 2}O{sub 6}{sup -} and W{sub 3}O{sub 9}{sup -} clusters are found to form chemisorbed complexes due to the presence of the extra electron. Thus, the W{sub 2}O{sub 6}{sup -} and W{sub 3}O{sub 9}{sup -} negative clusters can be viewed as models for O{sub 2} interaction with a reduced W site (W{sup 5+}) on the oxide surface. These studies also led to the surprising observation of the first d-orbital aromatic clusters in W{sub 3}O{sub 9}{sup 2-} and Mo{sub 3}O{sub 9}{sup 2-}, which each contains a completely delocalized three-center two-electron bond made entirely made of the metal d orbitals. This last result was highlighted in both Chem & Eng. News and Nature. We further studied a series of small metalate anions using electrospray, including the hydroxo and methoxo oxometalate MO{sub 3}(OH){sup -} and MO{sub 3}(OCH{sub 3}){sup -}, and the dimetalates: M{sub 2}O{sub 7}{sup 2-}, MM{prime}O{sub 7}{sup 2-}, and M{sub 2}O{sub 7}{sup -} (M, M{prime} = Cr, Mo, and W).

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: Final Report
  • Grant Number: FG02-03ER15481
  • DOI: 10.2172/958303 | External Link
  • Office of Scientific & Technical Information Report Number: 958303
  • Archival Resource Key: ark:/67531/metadc927015

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 7, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:52 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, Lai-Sheng. Early Transition Metal Oxides as Catalysts: Crossing Scales from Clusters to Single Crystals to Functioning Materials, report, July 7, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc927015/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.