NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE

PDF Version Also Available for Download.

Description

Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption ... continued below

Creation Information

Kaplan, D. November 13, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times , with 4 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption under typical subsurface conditions. These experiments indicated that the baseline K{sub d} values for the subsurface sandy and subsurface clayey sediments are 4.26 {+-} 0.24 L kg{sup -1} and 9.05 {+-} 0.61 L kg{sup -1}, respectively. These Np K{sub d} values of SRS sediments are the first to be reported since Sheppard et al. (1979). The previous values were 0.25 and 0.16 L kg{sup -1} for a low pH sandy sediment. To examine a possible range of K{sub d} values under various environmental scenarios, the effects of natural organic matter (NOM, also a surrogate for cellulose degradation products), the presence of various chemical reductants, and an anaerobic atmosphere on Np sorption were examined. The presence of NOM resulted in an increase in the Np K{sub d} values for both sediments. This behavior is hypothesized to be the result of formation of a ternary Np-NOM-sediment complex. Slight increases in the Np sorption (K{sub d} 13-24 L kg{sup -1}) were observed when performing experiments in the presence of chemical reductants (dithionite, ascorbic acid, zero-valent iron) or under anaerobic conditions. Presumably, the increased sorption can be attributed to a slight reduction of Np(V) to Np(IV), the stronger sorbing form of Np. The most significant result of this study is the finding that Np weakly sorbs to both end member sediments and that Np only has a slight tendency to reduce to its stronger sorbing form, even under the most strongly reducing conditions expected under natural SRS conditions. Also, it appears that pH has a profound effect on Np sorption. Based on the these new measurements and the revelations about Np redox chemistry, the following changes to 'Best K{sub d}' values, as defined in Kaplan (2006), for SRS performance assessment calculations are recommended.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SRNL-STI-2009-00634
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/969288 | External Link
  • Office of Scientific & Technical Information Report Number: 969288
  • Archival Resource Key: ark:/67531/metadc926990

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 13, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:35 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kaplan, D. NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE, report, November 13, 2009; South Carolina. (digital.library.unt.edu/ark:/67531/metadc926990/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.