Global Infrasonic Monitoring of Large Bolides.

PDF Version Also Available for Download.

Description

Using recent infrasonic data (1995-2001) and older infrasonic data recorded by AFTAC (1960-1974), we have refined our estimates of the global influx rate (cumulative influx) of large bolides with sufficient strength to deeply penetrate the atmosphere (below {approx} 50 km). The number of bolides arriving as a function of their initial source energy has been estimated from a least-squares curve-fit of our database of 19 bolides (for a source energy > 0.053 kt) with the resulting values and an estimate of the associated statistical counting errors: 30.3{+-} 6 bolides at {ge}0.1 kt, 5.8{+-} 2 at {ge}1 kt and 0.84{+-} 0.25 ... continued below

Physical Description

8 p.

Creation Information

ReVelle, D. O. (Douglas O.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using recent infrasonic data (1995-2001) and older infrasonic data recorded by AFTAC (1960-1974), we have refined our estimates of the global influx rate (cumulative influx) of large bolides with sufficient strength to deeply penetrate the atmosphere (below {approx} 50 km). The number of bolides arriving as a function of their initial source energy has been estimated from a least-squares curve-fit of our database of 19 bolides (for a source energy > 0.053 kt) with the resulting values and an estimate of the associated statistical counting errors: 30.3{+-} 6 bolides at {ge}0.1 kt, 5.8{+-} 2 at {ge}1 kt and 0.84{+-} 0.25 at {ge}15 kt. In this work we also used these estimates to infer the recurrence interval for energy levels slightly outside the original source energy range, The Tunguska bolide of 1908 ({approx}10 Mt) is a prime example of a previously observed body of great interest. Almost regardless of how we analyze the recent data, the conclusion is that bolides with Tunguska type energy levels should reoccur on the average every 120{+-}10 years.

Physical Description

8 p.

Source

  • Submitted to: Meteoroids 2001, Kiruna, Sweden, August 6-10, 2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-5652
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975811
  • Archival Resource Key: ark:/67531/metadc926987

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:38 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ReVelle, D. O. (Douglas O.). Global Infrasonic Monitoring of Large Bolides., article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc926987/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.