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We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds,
having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a
phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by
short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps
onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral
weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just
below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

PACS numbers: 74.70.Dd, 75.10.Jm, 75.40.Cx, 75.40.Gb

Correlated materials exhibit intriguing phenomena arising
from the interplay between spin, charge, lattice, and orbital
degrees of freedom. Orbital degrees of freedom can emerge in
multi-band systems such as3d transition metal compounds. In
these systems, spins and orbitals are strongly coupled as spin
exchange is the dominant interaction between different orbital
occupations, which in turn support different spin order. This
correlation can lead to a phase transition in one or both vari-
ables, the collective effects of which can be antecedent or sub-
sequent to a lattice structural transition [1]. A paradigmatic
example is manganites where orbital ordering is essential in
explaining the magnetic properties and phase transitions [2].

The newly discovered Fe-pnictide superconductors [3] dis-
play superconductivity in close proximity to magnetic order.
The observed collinear(π, 0) magnetic order [4] has been
studied theoretically from both weak- [5] and strong-coupling
points of view [6]. In particular, an anti-ferromagnetic (AF)
coupledJ1-J2 Heisenberg model on a 2D square lattice (de-
picted in Fig. 1 (a)) can give rise to an AF(π, 0) order when
J2 ≥ J1/2 [7]. Alternatively, this(π, 0) order may be ob-
tained through an anisotropicJ1a-J1b-J2 model [8], where
one has strong AF coupling in thex-direction, and ferro-
magnetic coupling along they-direction, as shown Fig. 1
(b). Interestingly, recent neutron scattering data [9] indicate
that the magnon energy is a maximum at momentum transfer
(π, π). This strongly favors theJ1a-J1b-J2 scenario which
reproduces the observed spin wave dispersion, see Fig. 1 (d).

A possible microscopic origin for the anisotropy in theJ1a-
J1b-J2 model is orbital ordering [10, 11]. When the orbitals
are ordered, the lattice distorts and the orbital lobe orientations
can cause a vanishing effective hopping in certain directions,
as in 1D edge-sharing copper oxides [12]. In conjunction with
double exchange [13], orbital ordering, affecting the direct
and super-exchange processes, can lead to even sign-changing
anisotropic exchange interactions. Proposals have been put
forth that consider ordering between the Fe 3dxz and 3dyz or-
bitals as a possible mechanism for the observed magnetism of

FIG. 1: (Color online) Schematic representation of various Hamil-
tonians: (a) TheJ1-J2, (b) theJ1a-J1b-J2, and (c) the spin-orbital
models. At zero temperature the additional orbital degrees of free-
dom freeze-out, and the spin-orbital model reduces to theJ1a-J1b-J2

model. (d) The magnon dispersionωk (in units ofJ1/J1a) calculated
from linear spin wave theory. HereJ1b = −0.1J1a, J2 = 0.4J1a in
theJ1a-J1b-J2 model, andJ2 = J1 in theJ1-J2 model. The spin
wave energy forms a maximum at(π, π) in theJ1a-J1b-J2 model,
which is a minimum in theJ1-J2 model.

the Fe pnictides [10, 11, 14]. These proposals remain contro-
versial in part because early band structure calculations [8],
which agree well with a variety of experiments, show a very
small difference in the occupation ofdxz anddyz orbitals in
the magnetically ordered tetragonal calculation [15]. On the
other hand, recentab initio calculations suggest robust orbital
order using Wannier orbitals [16]. Indeed, if the magnon en-
ergy is a maximum at (π, π) as reported in Ref. [9], this im-
plies not just a small anisotropy due to for example structural
considerations, but an extreme sign-changing one associated
with additional broken symmetry [11].

In this paper, we address the question: If the anisotropy in
exchange constants observed in neutron scattering is related to
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orbital order, what other consequences follow. To answer this,
we consider the following spin-orbital Hamiltonian relevant to
the schematic in Fig. 1 (c):

H = J1

∑

i

[Si · Si+x̂ nini+x̂ + Si · Si+ŷ (1 − ni)(1 − ni+ŷ)]

−
Jf

2

∑

<ij>

Si · Sj +
J2

2

∑

≪ij≫

Si · Sj , (1)

whereni is an Ising variable taking values 0 or 1, andSi is a
spin-1

2
operator:Si · Si = S(S + 1), andS = 1

2
. The sums

<> and≪≫ run over nearest- and second nearest-neighbors,
respectively. This model describes a system consisting of two
orbitals per site, with the occupation controlled by the Ising
variables:ni = 0 represents orbital 1 occupied;ni = 1 repre-
sents orbital 2 occupied.

When the interactions are dominated by an AF coupledJ1,
the above model finds its lowest energy configuration in a per-
fect ferro-orbitally ordered state corresponding to allni = 0
or 1. Therefore, at zero temperatureT = 0 this Hamiltonian
reduces to theJ1a-J1b-J2 model with J1a = J1 − Jf and
J1b = −Jf . On the other hand, the finite temperature proper-
ties would be quite different due to orbital fluctuations andex-
citations. In the following calculations we take the parameters
from neutron scattering data on CaFe2As2 [9]: SJ1a = 50
meV,SJf = 6 meV, andSJ2 = 20 meV.

We are interested in the finite temperature spin dynamics
of these systems; however, there are few numerical methods
capable of accomplishing this in a controlled manner. We use
the exact diagonalization (ED) technique, which has been uti-
lized extensively to investigate both zero and finite tempera-
ture properties for various quantum lattice models [17]. We
useN=16 site square plaquettes, already requiring a large
computational effort due to the additional orbital degreesof
freedom. Lattice translation, rotation, reflection and Ising-
orbital inversion symmetries reduce the216 Ising configura-
tions to 733 distinct ones. Wefully diagonalize the Hamilto-
nian in these Ising sectors and calculate dynamical quantities.

Our main results are as follows: (i) In a purely 2D system,
where in accord with the Mermin-Wagner theorem the spin-
rotational symmetry can not be spontaneously broken except
at T = 0, the orbital degrees of freedom undergo a phase
transition at a temperature scale∼ 0.2J1 set by short range
magnetic order. (ii) At temperatures below0.1J1, the Ising
variables are completely frozen and the model maps onto the
J1a-J1b-J2 model. AboveT = 0.1J1, the onset of orbital
excitations causes a scrambling of the spin spectral weight,
leading to sharply diminished spin-wave peaks. (iii) Thereis
a sudden increase in the uniform magnetic susceptibility just
below the phase transition. Above the transition, the uniform
susceptibility continues to increase up to fairly high temper-
atures, with a slope significantly higher than that in theJ1a-
J1b-J2 or theJ1-J2 model. (iv) The behavior of the specific
heat and the order-parameter at the transition are very close to
the corresponding Ising model on the same lattice, once the
temperatures are scaled by the peak values. This suggests that

FIG. 2: (Color online) Plots for (a) the specific heatCV , and (b) the
uniform magnetic susceptibilityχm for the three models considered.
The temperatureT is expressed in terms ofJ1 (or J1a). Compared
to the other two spin-only models, there is a sharp peak inCV and a
larger slope inχm in the spin-orbital model.

the transition is continuous and of second order, belongingto
the universality class of the 2D Ising model.

Fig. 2 shows the specific heatCV and uniform magnetic
susceptibilityχm for the spin-orbital model; for compari-
son we also plot the same quantities for the spin-1

2
J1a-J1b-

J2 (with J1b = −0.1J1a, J2 = 0.4J1a), andJ1-J2 (with
J2 = J1) models. A main difference inCV between the spin-
orbital and the other two spin-only models is the sharp peak
atT ∼ 0.23J1, an indication of a phase transition.

For an AF ordered ground state,χm will grow as T in-
creases fromT=0, and then turn down at some characteristic
temperature associated with short-range magnetic order.χm

at T =0 should have a finite value due to gapless excitations
(Goldstone modes) intrinsic to each model in the thermody-
namic limit. This is not captured in ED due to finite size ef-
fects. Nonetheless, one expects the results to be qualitatively
valid near the peak and quantitatively valid above it [18]. With
our parameters, the energy to flip a spin in the AF ground state
is approximatelyJ1 + Jf + 2J2 ≈ 2J1. Hence theT = 0
χm should be comparable to that of an isotropic square-lattice
Heisenberg model with the sameJ1 [19, 20]. One then ex-
pects for both the spin-orbital and theJ1a-J1b-J2 models an
identical susceptibility belowT = 0.1J1, with a magnitude of
∼ 0.05/J1. The sharp difference is the sudden increase inχm

betweenT = 0.1J1 and the phase transition∼ T = 0.2J1.
A direct way to locate the orbital ordering transition tem-

peratureTc is through the orbital Ising susceptibilityχI :

χI ≡
1

N

∑

α

Pα(Nt − N/2)2. (2)

The sum onα is over the216 Ising configurations, withPα

the probability of theαth configuration.Nt ≡
∑

i ni is the
sum of the Ising variables on the lattice tied to theαth Ising
configuration. According to the definition,χI is N/4 at T =
0, and monotonically decreases to the configuration averaged
value asT increases. The peak indχI/dT is a measure ofTc

which happens at∼ 0.23J1, as indicated by Fig. 3(a).
We can define an orbital entropySorb ≡ − 1

N

∑
α Pα lnPα,

which approachesln(2) at high temperature. On the other



3

FIG. 3: (Color online) (a) The orbital-Ising Susceptibility χI and its
derivative with respect toT in the inset. (b) The total systemSsystem

and orbitalSorb entropy in the spin-orbital model. In the vicinity of
the phase transition∼ R ln 2 entropy is lost.

hand, the total system entropySsystemincorporating both spin
and orbital degrees of freedom (obtained by integratingCV /T
with respect toT ) approachesln(4) per site asT increases.
Fig. 3(b) indicates thatSorb is completely exhausted soon after
Tc, saturating much faster thanSsystem. We have checked that
the behavior of the Ising variables in the spin-orbital model
is quantitatively very close to the pure Ising model once the
temperatures are scaled according to their correspondingCV

peak values. This suggests that the orbital phase transition is
in the 2D Ising universality class where the finite temperature
phase transition is continuous and of second order. A more
definitive conclusion would require study via other numeri-
cal techniques such as quantum Monte Carlo on larger sys-
tems. This, however, may face minus sign problems because
the spin-orbital model is frustrated.

We next turn our focus to the spin dynamics of the spin-
orbital model by studying the dynamic form factorSαβ(q, ω),
which is the Fourier transform of the spin-spin correlation
function 〈Sα

i (t) · Sβ
j (t′)〉. We calculateSzz(q, ω) via both

ED and linear spin wave theory. Apart from the small energy
gap in ED due to finite size effects, the spin wave dispersions
obtained from both methods are compatible, see Fig. 4 (a).
Neutron scattering on Fe-pnictide parent compounds indicates
that the magnon energy is a maximum at(π, π). This behav-
ior, absent in theJ1-J2 model, is captured correctly by the
J1a-J1b-J2 model, and hence theT = 0 spin-orbtial model.

At finite temperatures, orbital fluctuations start to play a
role. The spectra in the spin-orbital model broaden much
faster then theJ1a-J1b-J2 model and show anomalous shifts
to low frequencies. Fig. 4 (b) and (c) show the temperature
evolution of spin wave at(π, π) obtained from ED. At temper-
atures higher than∼ 0.3J1, only incoherent spin waves sur-
vive in the spin-orbital model. In contrast, in theJ1a-J1b-J2

model the coherent spin waves persist to a temperature higher
than T ∼ 0.6J1. This feature can be seen also in theω-
integrated form factorsSαβ(q) ≡

∫
dωSαβ(q, ω). For the

spin-orbital model, fromT = 0 to 0.4J1 the dominant peak
at (π, 0) decreases by 25% in intensity, while for theJ1a-J1b-
J2 model it requires a temperature higher thanT = 0.8J1 to
show a similar reduction, see Fig. 4 (d). Thus finite tempera-

FIG. 4: (Color online) (a)T = 0 Szz(q, ω) for the spin-orbital/J1a-
J1b-J2 models. (b)-(c) Finite temperatureSzz(q, ω) at (π, π) ob-
tained from ED for the spin-orbital, and theJ1a-J1b-J2 models, re-
spectively. The temperature goes fromT = 0.1J1 (the blue curve)
to T = 1.0J1 (the red curve), with a temperature increment between
each curve∼ 0.08J1. A highly incoherent spin dynamics is observed
in the spin-orbital model. (d) Finite temperatureω-integrated form
factorSzz(q) at (π, 0).

ture neutron spectra can distinguish these models.
Before we continue to discuss the relevance of this study

to the Fe pnictides, a few comments are in order. The issue
regarding the correlation strength in the Fe-pnictide materials
is controversial and currently under debate. Recently, x-ray
absorption data on several Fe-pnictide compounds revealed
that the on-site Coulomb repulsion was smaller than the band-
width, but also found a substantial Hund’s couplingJH = 0.8
eV between the Fe 3d orbitals [21]. Moreover, there is no
particular energy scale above which damped spin waves are
found [4]; this absence of a Stoner decay strongly favors a
picture based on localized moments.

In many regards, the pnictides are schizophrenic, having
aspects such as metallicity and strong covalency where cor-
relations play a minor role [21, 22], and anti-ferromagnetism
and local properties which derive directly from the strength
of the Hund’s coupling. Therefore a model based on local
moments which takes aim at the magnetic properties of the
pnictides and other transition metal oxide is completely inline
with the findings in Ref. [21], and more recently with ob-
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servations from optical conductivity measurements [23]. Our
model focuses on a subset of localized orbitals in connection
with magnetism. but neglects the fact that the 5 Fed orbitals
in Fe pnictides are not strongly crystal field split.

Certain details of the model can be modified easily without
changing the essential features. For example, there can be a
direct coupling between the Ising variables reflecting lattice
effects and quadrupolar couplings. In addition, the local en-
vironment of As positions could modify local field screening
and exchanges. These changes will alter the orbital gap and
transition temperature, but not the overall picture. We will
make our comparisons only in semi-quantitative terms.

With this in mind, the spin-orbital model captures many
features of the uniform susceptibility in the pnictides [24].
For example, in BaFe2As2 the susceptibility in emu/mole is
0.6 × 10−3 at T = 0; it sharply increases nearT = 150K
to about0.9 × 10−3 and then continues to increase linearly
to about1.5 × 10−3 at T = 600K. If part of the suscepti-
bility is a weakly temperature dependent Pauli term, this im-
plies an increase by a factor of about 3 betweenT = 0 and
T = 600K. Our finite-size calculations can be converted
[25] to emu/mole by multiplying the susceptibility by a fac-
tor (8 ∗ g2 ∗ 0.0938)/J1, whereJ1 is in Kelvin and a factor of
2 comes from the 2 Fe atoms per mole of the material. With
J1 ≈ 1000K, this gives a susceptibility in cgs units of order
10−3 at500K, which comes down by about a factor of3 − 4
by T = 0 including a sharp drop below the transition.

In the 1111 pnictide family, two phase transitions at nearby
temperatures have been reported, a structural transition at
higherT and a magnetic transition at lowerT . In contrast,
only one simultaneous structural and magnetic transition is
found in the 122 family. This is explained naturally in terms
of 3D couplings. Orbital ordering driven by magnetism re-
quires the prior development of short-range spin order. A
3D system with strong inter-planar coupling would therefore
lead to simultaneous spin and orbital order. In contrast, for
a weakly inter-planar coupled 2D system orbitals order when
short-range spin order develops, but spins only order on the
scale of inter-planar couplings. This therefore leads to two
separate transitions. These observations are indeed consistent
with the two different pnictide families. This aspect also has
been suggested forJ1-J2 Heisenberg models [6]. However,
one important difference is that in the spin-orbital model∼
R ln 2 entropy is lost in the vicinity of the transition; it is likely
significantly smaller in theJ1-J2 models. It is noted that in
the Fe1+ySexTe1−x systems a comparable amount of entropy
change is found near the AF transition [26].

In summary, we have studied a model system that captures
the physics of coupled spin and orbital degrees of freedom.
Such a system apparently undergoes a continuous, second-
order phase transition to an orbitally ordered state at a tem-
perature set by short-range magnetic order. The onset of or-
bital excitations and fluctuations cause a highly incoherent
spin dynamics, leading to a sharp increase in uniform mag-
netic susceptibility. The susceptibility continues to increase
up to fairly high temperature above the phase transition, with

a large slope comparable to those observed in the pnictides.
Our calculations of dynamic structure factors at finite tem-
peratures serve as clear predictions of the spin-orbital model,
that can be tested by further experiments. In addition to the
pnictides, the model should be generally applicable to other
systems with orbital degeneracy, with the strengths/signsof
the exchange constants dependent on the microscopic details.
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