ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
PDF Version Also Available for Download.
Description
Abstract We conduct a detailed test of a recently developed technique, CAPloc, in recovering source parameters from a few stations against results from a large broadband network in Southern California. The method uses a library of 1D Green’s functions which are broken into segments and matched to waveform observations with adjustable timing shifts. These shifts can be established by calibration against a distribution of well-located earthquakes and assembled in tomographic images for predicting various phase-delays. Synthetics generated from 2D cross-sections through these models indicates that 1D synthetic waveforms are sufficient in modeling but simply shifted in time for most hard-rock ...
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Abstract We conduct a detailed test of a recently developed technique, CAPloc, in recovering source parameters from a few stations against results from a large broadband network in Southern California. The method uses a library of 1D Green’s functions which are broken into segments and matched to waveform observations with adjustable timing shifts. These shifts can be established by calibration against a distribution of well-located earthquakes and assembled in tomographic images for predicting various phase-delays. Synthetics generated from 2D cross-sections through these models indicates that 1D synthetic waveforms are sufficient in modeling but simply shifted in time for most hard-rock sites. This simplification allows the source inversion for both mechanism and location to easily obtain by grid search. We test one-station mechanisms for 160 events against the array for both PAS and GSC which have data since 1960. While individual solutions work well (about 90%), joint solutions produce more reliable and defensible results. Inverting for both mechanism and location also works well except for certain complex paths across deep basins and along mountain ridges.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Helmberger, Donald V.; Tromp, Jeroen & Rodgers, Arthur J.ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS,
report,
January 27, 2009;
United States.
(digital.library.unt.edu/ark:/67531/metadc926969/:
accessed April 23, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.