Reconstructing cosmological matter perturbations using standard candles and rulers

PDF Version Also Available for Download.

Description

For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational ... continued below

Creation Information

Alam, Ujjaini; Sahni, Varun & Starobinsky, Alexei A January 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified or interact directly. We show that for current supernovae (SNe) data, the linear growth factor at z = 0.3 can be constrained to 5% and the linear growth rate to 6%. With future SNe data, such as expected from the Joint Dark Energy Mission, we may be able to constrain the growth factor to 2%-3% and the growth rate to 3%-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future baryon acoustic oscillation data which would deliver measurements of both the angular diameter distance and the Hubble parameter, it should be possible to constrain the growth factor at z = 2.5%-9%. These constraints grow tighter with the errors on the data sets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.

Source

  • Journal Name: Journal of Cosmology and Astroparticle Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-08-07850
  • Report No.: LA-UR-08-7850
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956630
  • Archival Resource Key: ark:/67531/metadc926849

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Alam, Ujjaini; Sahni, Varun & Starobinsky, Alexei A. Reconstructing cosmological matter perturbations using standard candles and rulers, article, January 1, 2008; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc926849/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.