DEVELOPMENT OF PROCESS CONTROL EQUATIONS TO SUPPORT DETOXIFICATION OF COPPER USING NATURAL HUMATE AMENDMENTS

PDF Version Also Available for Download.

Description

Recent scientific research and changes in regulatory policies have led to reductions in the allowable discharges of several contaminant metals, including copper, into surface water. Low target concentrations and variable outfall conditions challenge the efficacy of traditional treatment technologies such as ion exchange. In reviewing various treatment options, scientists and engineers at the Savannah River Site (SRS) developed a treatment strategy focusing on toxicity reduction (rather than the removal of the copper) and demonstrated that the method is viable and promising for mitigating copper toxicity. The resulting outfall chemistry protects the ecosystem in the receiving stream in a manner that ... continued below

Creation Information

Looney, B.; Millings, M.; Halverson, N. & Nichols, R. August 21, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Recent scientific research and changes in regulatory policies have led to reductions in the allowable discharges of several contaminant metals, including copper, into surface water. Low target concentrations and variable outfall conditions challenge the efficacy of traditional treatment technologies such as ion exchange. In reviewing various treatment options, scientists and engineers at the Savannah River Site (SRS) developed a treatment strategy focusing on toxicity reduction (rather than the removal of the copper) and demonstrated that the method is viable and promising for mitigating copper toxicity. The resulting outfall chemistry protects the ecosystem in the receiving stream in a manner that is equal to, or better than, technologies that remove copper to the emerging regulatory levels. Further, the proposed toxicity reduction strategy results in collateral beneficial changes in outfall water chemistry such that the outfall more closely matches the chemistry of natural streams for key parameters such as the dissolved organic carbon (DOC). The detoxification process is based on the EPA BLM. Specifically, modeling indicates that copper toxicity can be mitigated by modest additions of natural organic carbon and that the amount of amendment needed can be determined based on pH and stream flow. The organic carbon amendments proposed for the treatment/detoxification process are extracts of natural materials that are produced for use in organic agriculture. These extracts are known by several common names such as potassium humate, soluble humic acid, and a variety of brand trademarks. When used to reduce ecosystem toxicity in surface water, these amendments bind copper and compete with the biological receptor sites, resulting in a reduction of impacts to key food chain organisms such as the Daphnia ('water flea'). Design and implementation of the process is straightforward. The core equipment consists of storage tank(s), pH sensor(s), outfall flow monitor(s), variable speed pump(s), and a programmable logic controller (PLC). The PLC collects information on pH and outfall flow, and modulates the pump flow rate to meter the correct amount of amendment into the outfall. A mathematical relationship, or control equation, is programmed into the PLC and serves as the basis of the operation. A summary of the development of, and key documentation for, the process control equation is provided.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SRNL-STI-2009-00353
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/960213 | External Link
  • Office of Scientific & Technical Information Report Number: 960213
  • Archival Resource Key: ark:/67531/metadc926782

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 21, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Looney, B.; Millings, M.; Halverson, N. & Nichols, R. DEVELOPMENT OF PROCESS CONTROL EQUATIONS TO SUPPORT DETOXIFICATION OF COPPER USING NATURAL HUMATE AMENDMENTS, report, August 21, 2009; South Carolina. (digital.library.unt.edu/ark:/67531/metadc926782/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.