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Abstract 

As critical dimensions for leading-edge semiconductor devices shrink, line-edge roughness 

(LER) requirements are pushing well into the single digit nanometer regime. At these scales 

many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) 

lithography, modeling has shown the lithographic mask to be a source of significant concern. 

Here we present a correlation-based methodology for experimentally measuring the magnitude 

of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 

numerical aperture EUV rnicrofield exposure tool. The measurements demonstrate that such 

effects are indeed present and of significant magnitude. The method is also used to explore the 

effects of illumination coherence and defocus and has been used to verify model-based 

predictions of mask-induced LER. 
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Introduction 

Line edge and width roughness (LER and L WR) remains the most daunting challenge facing the 

development of commercially viable extreme ultraviolet (EUV) photoresists. LER, however, is not 

exclusively a resist problem, system-level effects can also be important. Perhaps the most significant 

of these system level effects for EUV is the mask. [1-4] The mask can contribute to LER in two 

different ways. The first and most obvious source is from LER on the mask itself. Coupling of the 

mask LER to the wafer can be understood using the concept of the LER transfer function (LTF) [1] 

which is closely related to the optic modulation transfer function (MTF). A second, less obvious, 

source of LER comes from phase roughness in the clear areas of the mask. Because EUV masks are 

reflective and the wavelength is extremely short, even sub-nm level of roughness can have significant 

impact on phase roughness in the reflected field. This phase roughness at the mask then couples to the 

intensity variations at the wafer through the concept of speckle [2,3]. Being a coherent effect, this 

mask-induced speckle is highly dependent on illumination coherence and defocus. 

Recent modeling results [4] have suggested that mask effects are indeed important In 

advanced EUV development tools such as the SEMA TECH Berkeley microfield exposure tool 

(BMET) [5]. Here we present the first resist-based measurements of such effects. Correlation 

techniques are used to distinguish mask from resist sources of LER. Moreover, the variable 

illumination capabilities of the BMET are used to help distinguish the two mask sources of LER. 

Finally, the experimental results are directly compared to modeling. 

Measurement methodology 

It is evident that resist sources of LER such as acid shot noise, photo-acid generator uniformity, 

___ quencheLuniformity, blocking group uniformity, ... wiUberandom-fromone-exposure-to the 

next. Mask sources of LER, however, would be invariant from exposure to exposure. Thus by 
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characterizing the correlation of the line edge deviation function between multiple exposures of 

an identical region on the mask we are able to distinguish invariant mask effects from random 

resist effects. For the purpose of the analysis below, we define L as a random variable 

representing the deviation of the line edge from a straight line as a function of position along the 

line. (Note that traditionally we distill this random variable into its standard deviation and report 

the LER as three times the standard deviation.) Next we represent L as the summation of two 

independent random variables M and R where M is the mask-induced edge deviation and R is the 

resist-induced deviation. So for anyone exposure, or realization, (represented by subscript i) we 

write the total measured edge deviation as 

(1) 

Because the mask effects are assumed to be invariant all Mi will be completely correlated 

whereas the random resist deviation realizations Ri will be completely uncorrelated. For the 

correlated case of M we can drop the subscript and for two independent exposures we get 

(2) 

For further simplification we assume the process to be stationary meaning that statistics are 

invariant between the individual exposures (realizations), and we assume all the random 

variables to be zero mean. We note that neither of these assumptions are restrictive. If the 

statistics were not invariant, characterization of any pat1icular lithography process would be 

meaningless since it would be different every time, and mean variations of the line edge are not 

of concern from the perspective of LER 

The correlation between L1 and L2 can now be written as 
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(3) 

where we have made use of the fact that the variables are zero mean. Expanding the Ll and L2 

terms and making use of the fact the process is assumed invariant (standard deviation of Ll and 

L2 are the same) yields, 

p = E[M
2 

+RjR2 +~jR2 +M2RJ 

O"L 

p = E[M 2 J+ E[RtR2 ]+ ;[MR2]+ E[MRt ] 

O"L 

(4) 

(5) 

(6) 

Now making use of the fact that M and R as well as individual realizations of R are independent, 

and again making use of the fact that the variables are zero mean, Eg. 6 simplifies to 

(7) 

Thus the correlated mask LER (which is proportional to the standard deviation of M) can be 

written as 

(8) 

where LERL is the total measured LER. 

Experimental results 

---------. ------

--Toexpenmentally determine the importance of mask effects in recent advanced resist testing 

with the SEMATECH Berkeley microfield exposure tool [6], we implement the correlation 
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measurement described above. To accentuate the mask phase roughness effects presented in 

Section 1, we use a small sigma (0.05) off-axis illumination setting with an offset of 0.65. We 

refer to this type of illumination as monopole. The use of off axis illumination was required due 

to the fact that the MET optic [5] used in these tests has a central obscuration with a radius equal 

to 30% of the total optic pupil. The mask phase roughness effects are further accentuated by 

working with 100-nm wafer-plane defocus. As demonstrated by the modeled mask-induced LER 

data in Table 1 (see Ref. [4] for details on the modeling procedure), coherence and defocus 

parameters have a more significant impact on image LER coupling coming from phase 

roughness on the mask rather than mask absorber LER. Note that defocus has a more significant 

impact with annular illumination for both sources of mask-induced LER. This is due to the 

decreased depth of focus for annular illumination versus monopole. It is interesting to note that 

based on speckle effects alone one would expect the monopole setting to be more sensitive to 

defocus for the multilayer roughness case. 

Figure 1 shows scanning electron micrographs (SEMs) of three independent exposures of 

the same 50 nm line on the mask. Although not shown in the images, the line on the mask is 

positioned· in close proximity to a unique alignment feature (label) that is captured within the 

same SEM image field. Correlation to the alignment feature is used to register the three 

independent images for analysis. To minimize impact on the results, the alignment accuracy is 

required to be a fraction of the correlation length of the roughness to be analyzed. As described 

below, for the results presented here, the correlation length is on the order of 15 nm which is well 

within the capabilities of the auto-correlation-based alignment procedure. To within the 

reproducibility of the exposure tool, the illumination and defocus settings are unchanged from 

image to image, thus we would expect the mask-induced LER to also be unchanged. Focusing on 
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the bottom edge, Fig. 2 shows the extracted line edge data [7] from the three independent 

exposures on the same axis. The correlation between the exposures is readily evident by eye. 

Numerical evaluation of the correlation consists of implementing Eq. 3 where L1 and L2 are two 

of the three sets of line edge data shown in Fig. 2. Doing so yields an average correlation 

between the three exposures of 61 %, where the average correlation is defined as the average of p 

measured from all possible two-line permutations of the three-line data set. 

(9) 

The three-line average full LER (LER L ) for this single edge over the full frequency content 

present in Fig. 2 is 4.3 nm. Using Eq. 8, the correlated LER (LERM ) can now be calculated 

yielding 3.4 ± 0.2 nm. 

The uncertainty in the measured correlation number is a function of the total analyzed 

line length relative the correlation length of the roughness. In essence what is being measured is 

the cross-correlation of two independent realizations of the line edge. If this line edge is viewed 

over a length that is short relative to the correlation length of the underlying random processes 

there will be a very large uncertainty in the measured value unless a large number of independent 

realizations (exposures) is observed. Assuming the process to be ergodic, a longer length of line 

can be observed in lieu of a larger number of independent realizations. Clearly the random 

process of concern arising from random resist and photon effects can be assumed to be ergodic. 

This being the case, experimental ease strongly favors the use of longer lengths of lines and 

fewer realizations with the minimum number of realizations as assumed in the analysis above 

being two. The relative uncertainty of the correlation measurement can be shown to be I/sqrt(N) 

where N is the analysis length divided by the correlation length. For the data presented here, the 
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total analysis length is approximately 1.3 ).lm and the correlation length and the correlation 

length approximately 15 nm yielding a relative uncertainty of approximately 10%. The precision 

is fUlther improved by considering three realizations instead of just two. 

Because the projection optics can be viewed as a low-pass filter, one should expect the 

mask-induced LER to be bandlimited [1,8]. Figure 3 show the power spectral density [7] of the 

modeled mask-induced LER demonstrating this effect. Figure 3(a) is for mask absorber LER and 

Fig. 3(b) is for mask multilayer roughness. These results indicate that limiting the bandwidth in 

our measurement, would cause the correlation to increase since the lowpass filtering will have 

less effect on the mask-induced LER than resist LER which is not so strongly band limited. 

Figure 4 shows the filtered line edge data where a tophat filter is used and the cut-off frequency 

is set to lI(target pitch), which for this case is 10 ).lm-1
. Note that the cut-off frequency is chosen 

in accordance to the International Technology Roadmap for Semiconductors [9]. Within this 

lower frequency range the average correlation is increased to 79% and the average LER 

decreased to 3.8 nm. Using Eq. 8 the average correlated LER (LERM ) for the cases in Figs. 2 

and 4 respectively is 3.4 ± 0.2 nm where, as described above, the uncertainty is due to the limited 

extent of the correlation measurement relative to the bandwidth. The fact that LERM remains 

unchanged while LERL decreases substantially with filtering, shows that as expected due to the 

low-pass filtering of the optic, the correlated mask-induced LER is found to be significantly 

more bandlimited than is the uncorrelated resist roughness. 

To see how the measured correlated LER (LERM ) results compare to predicted mask­

induced LER values, we perform aerial image modeling with the known imaging conditions and 

a modeling mask with absorber and phase roughness characteristics statistically matching the 
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measured mask characteristics [4]. Figure 5 shows the modeled binarized aerial image of 50-nm 

lines and spaces yielding an average LER of 3.0 over the 12 edges and a 10' variation for the 

LER measured on a single edge of 0.7 nm. To within statistical uncertainties, the measured and 

experimental results are identical. 

Next we experimentally explore the effects of lower coherence illumination by 

performing the same measurement using annular illumination with an inner 0' of 0.35 and an 

outer 0' of 0.55. Annular illumination is chosen over a large disk due to the projection optics 

central obscuration described above. Figure 6 shows the extracted edge overlay plots for both 

full bandwidth and the bandlimited cases (max frequency = 10 !lm-I
). The average correlation 

(15) for the full bandwidth and bandlimited cases are 35% and 60%, respectively. The average 

LER values (LERL ) are 4.3 nm and 3.6 nm, respectively. The values lead to correlated LER 

magnitudes (LERM ) of 2.5 ± 0.3 nm and 2.8 ± 0.3 nm, respectively. The modeling for this case 

(Fig. 7) yields a predicted mask-induced LER of 2.5 ± 0.3 nm for a single edge. Using the 

modeling data in Table 1 as a guide, the fact that the correlated roughness decreased by going to 

annular illumination indicates that mask multilayer roughness is the dominant source of the 

measured correlated LER. The values in Table 1 can be explained heuristically by noting that 

mask multilayer roughness leads to LER through the generation of speckle by virtue of the 

random phase it imparts on the reflected beam. It is evident that this speckle effect becomes 

increasingly severe as coherence is increased. For mask absorber pattern roughness, however, the 

trend is the opposite due to the improved imaging characteristics for the annular illumination 

compared to the small 0' off axis case. Should the correlated LER have been found to increase 

when going to annular illumination, the conclusion would have been that the dominant mask 
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effect is the absorber LER instead of the multilayer roughness. 

Finally we experimentally consider the effect of defocus with annular illumination. 

Figure 8 shows the extracted edge overlay plots for both full bandwidth and the bandlimited 

cases (max frequency = 10 11m"') at best focus. The average correlation (j5) for the full 

bandwidth and bandlimited cases are 35% and 53%, respectively. The average LER values 

(LERL ) are 3.5 nm and 2.7 nm, respectively. The values lead to correlated LER magnitudes 

(LERM ) of 2.1 ± 0.3 nm and 2.0 ± 0.3 nm, respectively. The modeling for this case (Fig. 9) 

yields a predicted mask-induced LER of 1.4 ± 0.3 nm for a single edge. Although very close to 

still having overlapping error bars between measurement and prediction, the match is clearly not 

as good as the other two cases. The discrepancy could come from an experimental error in the 

focus setting. For example, the experimental focus step size was 100 nm which arguably could 

lead to a focus error of 50 nm. Another potential source of effective focus error is from the finite 

thickness of the resist making it physically impossible to achieve the ideal planar focus value. 

Note that the film thickness for these measurements was 80 nm which is significant compared to 

the 100-nm focus change of interest. Figure 10 demonstrates the modeled sensitivity of the 

process to defocus. Plotted is the modeled mask-induced LER for the conditions in Fig. 9 but for 

variable focus. 

Although the above results are focused on determining the correlated LER (LERM ), it is 

evident that the same process also yields a measure of the uncorrelated LER 

which can be interpreted to represent the resist-limited LER. Table 2 shows the uncolTelated 
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LER (LERR ) for the three cases described above along with the modeled image log slope. As 

expected, the resist-limited LER is inversely proportional to the image log slope in cases where 

the image log slope drops below 85 11m- I
. Despite the sizable mask contributions found above, 

the resist-limited LER itself remains of significant concern due to the quadratic nature of the 

addition of the two terms. 

Summary 

A exposure-to-exposure correlation procedure has been presented allowing resist-image LER to be 

segregated into correlated and uncorrelated terms. The correlated tenns, being fixed in time, are 

attributed to mask effects and the uncorrelated tenns assumed to be due to random resist and shot 

noise effects. Moreover, by applying the method with various illumination and focus settings, the two 

dominant mask contributors (absorber LER and multilayer roughness) can further be distinguished. 

This methodology provides crucial insight for targeting future LER reduction efforts. The method has 

been used to determine the dominant LER effects in prints from a high resolution EUV microfield 

exposure research and development tool. The correlation measurement has successfully verified 

predicted mask-induced LER effects. As expected based on detailed metrology of the mask and 

modeling, mask multilayer roughness has been shown to be the dominant effect for our experimental 

conditions. The effects are highly dependent on illumination coherence and defocus. The method can 

also be applied to measure the resist-limited (uncorrelated) LER allowing resist researchers to better 

understand the fundamental limits of their materials. 
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Fig. 1. Scanning electron micrographs (SEMs) of three independent exposures of the same 50 

run line on the mask using off-axis 0.5-0' illumination and lOO-run image-plane defocus. 

Fig. 2. Extracted line edge data from the three independent exposures from Fig. 1 plotted on 

the same axis. 

Fig. 3. Power spectral density of the modeled mask-induced LER demonstrating the effect of 

low-pass filtering caused by the projection optics. (a) is for mask absorber LER and (b) is for mask 

multilayer roughness. 

Fig. 4. Filtered line edge data where a tophat filter is used and the cut -off frequency is set to 

lI(target pitch), which for this case is 10 /-tm- I
. 

Fig. 5. Modeled binarized aerial image of 50-run lines and spaces under modeling conditions 

set to match the exposure conditions used in Fig. 1. Modeling results yield an average LER of 3.0 over 

the 12 edges and a 10' variation for the LER measured on a single edge of 0.7 run. 

Fig. 6. Line edge roughness data for three independent exposures of a single edge using 

annular illumination and l00-nm defocus. Extracted edge overlay plots for both full bandwidth and 

bandlimited cases (max frequency = 10 /-lm- I
). 

Fig. 7. Modeling results for the annular illumination lOO-run defocus case. Analysis yields a 

predicted mask-induced LER of 2.5 ± 0.3 run for a single edge. 

Fig. 8. Line edge roughness data for three independent exposures of a single edge using 

annular illumination and O-run defocus. Extracted edge overlay plots for both full bandwidth and 

band limited cases (max frequency = 10 /-lm-I
). 

Fig. 9. Modeling results for the annular illumination lOO-run defocus case. Analysis yields a 

predicted mask-induced LER of 1.4 ± 0.3 run for a single edge. 
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Fig. to. Modeled sensitivity of the process to defocus. Plotted is the modeled mask-induced 

LER for the conditions in Fig. 9 but for variable focus. 
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Table 1. Modeled mask~induced LER as a function of coherence and defocus. The imaging 

conditions have a more significant impact on image LER coupling from phase roughness on the mask rather 

than mask absorber LER .. 

Table 2. Direct comparison of uncorrelated LER (LERR ) and modeled image log slope. 
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Annular Mono~ole 0' = 0.05 
Best focus 100-nm defocus Best focus 100-nm defocus 

Absorber LER 1.20 1.27 0.74 0.81 

Multilayer roughness 0.85 1.84 2.63 2.93 
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Uncorrelated Image log 
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