SEM Characterization of an Irradiated Dispersion Fuel Plate with U-10Mo Particles and 6061 Al Matrix

PDF Version Also Available for Download.

Description

It has been observed that during irradiation of a dispersion fuel plate, fuel/matrix interactions can impact the overall fuel plate performance. To continue the investigation of the irradiation performance of Si-rich fuel/matrix interaction layers, RERTR-6 fuel plate V1R010 (U- 10Mo/6061 Al) was characterized using scanning electron microscopy. This fuel plate was of particular interest because of its similarities to fuel plate R1R010, which had U-7Mo particles dispersed in 6061 Al. Both fuel plates were irradiated as part of the RERTR-6 experiment and saw very similar irradiation conditions. R1R010 was characterized in another study and was observed to form relatively uniform ... continued below

Creation Information

Keiser, D. D.; Jue, J. F.; Robinson, A. B.; Medvedev, P. G. & Finlay, M. R. November 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

It has been observed that during irradiation of a dispersion fuel plate, fuel/matrix interactions can impact the overall fuel plate performance. To continue the investigation of the irradiation performance of Si-rich fuel/matrix interaction layers, RERTR-6 fuel plate V1R010 (U- 10Mo/6061 Al) was characterized using scanning electron microscopy. This fuel plate was of particular interest because of its similarities to fuel plate R1R010, which had U-7Mo particles dispersed in 6061 Al. Both fuel plates were irradiated as part of the RERTR-6 experiment and saw very similar irradiation conditions. R1R010 was characterized in another study and was observed to form relatively uniform Si-rich layers during fabrication that remained stable during irradiation. Since U-10Mo does not interact as much with 6061 Al at high temperatures to form layers, it was of interest to characterize a fuel plate with these particles since it would allow for a comparison of fuel plates with different amounts of preirradiation interaction zone formation, which were then exposed to similar irradiation conditions. This paper demonstrates how the lower amount of interaction layer development in V1R010 during fabrication appears to impact the overall performance of the fuel plate, such that it does not behave as well as R1R010 in terms of interaction layer stability. Additionally, the results of this study are applied to improve the understanding of fuel/cladding interactions in monolithic fuel plates that consist of U-10Mo foils encased in 6061 Al cladding.

Source

  • RERTR 2009,Beijing, China,11/01/2009,11/05/2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-09-17106
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 971361
  • Archival Resource Key: ark:/67531/metadc926452

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 2:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keiser, D. D.; Jue, J. F.; Robinson, A. B.; Medvedev, P. G. & Finlay, M. R. SEM Characterization of an Irradiated Dispersion Fuel Plate with U-10Mo Particles and 6061 Al Matrix, article, November 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc926452/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.