Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride

PDF Version Also Available for Download.

Description

We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions ... continued below

Physical Description

8 pages

Creation Information

Sacchetti, A.; Degiorgi, L.; Giamarchi, T.; Ru, N. & Fisher, I. R. December 14, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions and umklapp processes might play a relevant role in the formation of the charge-density-wave state in these compounds.

Physical Description

8 pages

Source

  • Journal Name: Submitted to Physical Review B

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13859
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 969242
  • Archival Resource Key: ark:/67531/metadc926428

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 14, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • July 25, 2017, 3:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sacchetti, A.; Degiorgi, L.; Giamarchi, T.; Ru, N. & Fisher, I. R. Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride, article, December 14, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc926428/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.