Multi Module Modeling of Ultra-Relativistic Heavy Ion Collisions.

PDF Version Also Available for Download.

Description

Multi Module Model is required for the realistic and detailed description of an ultrarelativistic heavy ion reaction. We are working in the framework of such a model: initial stages are described by Effective String Rope Model with expanding final streaks; hydrodynamical approach is used for the intermediate stages. This paper is mainly devoted to Third Module - the one dealing with Freeze Out (FO). Two possibilities are discussed in details: (A) freeze out at the constant time hypersurface, where the statistical production model is used to describe post FO particle species; and (B) simultaneous hadronization and freeze out from supercooled ... continued below

Physical Description

14 p.

Creation Information

Magas, V. K.; Csernai, L. P. (László P.); Keranen, A.; Manninen, J. & Strottman, D. D. (Daniel D.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Multi Module Model is required for the realistic and detailed description of an ultrarelativistic heavy ion reaction. We are working in the framework of such a model: initial stages are described by Effective String Rope Model with expanding final streaks; hydrodynamical approach is used for the intermediate stages. This paper is mainly devoted to Third Module - the one dealing with Freeze Out (FO). Two possibilities are discussed in details: (A) freeze out at the constant time hypersurface, where the statistical production model is used to describe post FO particle species; and (B) simultaneous hadronization and freeze out from supercooled QGP. For the last case the ALCOR-like algorithm for calculation of the post FO particle species is presented, due to the fact that these do not have time to reach chemical equilibrium.

Physical Description

14 p.

Source

  • Submitted to: Proceedings of BCPL Meeting, Bergen, Norway

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-1559
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976122
  • Archival Resource Key: ark:/67531/metadc926426

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Magas, V. K.; Csernai, L. P. (László P.); Keranen, A.; Manninen, J. & Strottman, D. D. (Daniel D.). Multi Module Modeling of Ultra-Relativistic Heavy Ion Collisions., article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc926426/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.