EVALUATION OF FLOWSHEET CHANGES FOR THE HIGHLY ENRICHED URANIUM BLENDDOWN PROGRAM

PDF Version Also Available for Download.

Description

H Canyon is considering a flowsheet change for Plutonium (Pu) Contaminated Scrap (PuCS) material. The proposed change is to route dissolved PuCS material directly to a uranium (U) storage tank. As a result, the PuCS solution will bypass Head End and First U Cycle, and will be purified by solvent extraction in Second U Cycle. The PuCS solution contains appreciable amounts of boron (B) and fluoride (F{sup -}), which are currently at trace levels in the U storage tank. Though unlikely, if the B concentration in the U storage tank were to reach 1.8 g B/g U, the entire contents ... continued below

Creation Information

Crowder, M.; Rudisill, T.; Laurinat, J. & Mickalonis, J. October 22, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

H Canyon is considering a flowsheet change for Plutonium (Pu) Contaminated Scrap (PuCS) material. The proposed change is to route dissolved PuCS material directly to a uranium (U) storage tank. As a result, the PuCS solution will bypass Head End and First U Cycle, and will be purified by solvent extraction in Second U Cycle. The PuCS solution contains appreciable amounts of boron (B) and fluoride (F{sup -}), which are currently at trace levels in the U storage tank. Though unlikely, if the B concentration in the U storage tank were to reach 1.8 g B/g U, the entire contents of the U storage tank would likely require a second pass through Second U Cycle to provide sufficient decontamination to meet the Tennessee Valley Authority (TVA) Blend Grade Highly Enriched Uranium (HEU) specification for B, which is 30 {micro}g/g U. In addition, Second U Cycle is expected to provide sufficient decontamination of F{sup -} and Pu regardless of the amount of PuCS solution sent to the storage tank. Though aluminum (Al) is not present in the PuCS solution, B can be credited as a complexant of F{sup -}. Both stability constants from the literature and Savannah River National Laboratory (SRNL) corrosion studies were documented to demonstrate that B complexation of F{sup -} in nitric acid solutions is sufficient to prevent excessive corrosion. Though B and Al complex F{sup -} to a similar degree, neither completely eliminates the presence of free F{sup -} in solution. Therefore, a limited amount of corrosion is expected even with complexed F{sup -} solutions. Tanks maintained at ambient temperature are not expected to experience significant corrosion. However, the Low Activity Waste (LAW) evaporators may be subjected to a corrosion rate of about 25 mils per year (mpy) as they reach their highest F{sup -} concentrations. The feed adjustment evaporator would only be subjected to the corrosion rate of about 25 mpy in the latter stages of the PuCS campaign. An issue that must be addressed as part of the proposed PuCS flowsheet change is that B has limited solubility in concentrated nitric acid solutions. As the proposed PuCS campaign progresses, the B concentration will increase in the U storage tank, in Second U Cycle feed, and in the 1DW stream sent to the LAW evaporators. Limitations on the B concentration in the LAW evaporators will be needed to prevent formation of boron-containing solids.

Notes

available

Source

  • Journal Name: Separations Science and Technology

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00381
  • Grant Number: DE-AC09-08SR22470
  • Office of Scientific & Technical Information Report Number: 972202
  • Archival Resource Key: ark:/67531/metadc926425

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 22, 2007

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Crowder, M.; Rudisill, T.; Laurinat, J. & Mickalonis, J. EVALUATION OF FLOWSHEET CHANGES FOR THE HIGHLY ENRICHED URANIUM BLENDDOWN PROGRAM, article, October 22, 2007; South Carolina. (digital.library.unt.edu/ark:/67531/metadc926425/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.