Title: Unanticipated Results in the Uranium Niobium Alloy System

Author(s): Jason C. Cooley, W. Larry Hults, Larry Dauelsberg, Dan Thoma, Eric Peterson, Dave Teter, James L. Smith, Ann M. Kelly, Jason C. Lashley

Submitted to: American Physical Society March Meeting, Indianapolis, Indiana

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
The uranium niobium binary alloy system exhibits a rich collection of phenomena for study. The composition range from 0wt.% Nb to 10wt.% Nb exhibits multiple crystallographic phases with interesting properties such as superconductivity, charge density waves and shape memory effects. We have measured the resistivity and heat capacity as a function of temperature from 2 to 325K in the above composition range in an effort to map out the phase boundaries of interest. Surprisingly the temperature dependence of the resistivity transitions from metallic (decreasing with decreasing temperature) to nonmetallic (increasing with decreasing temperature). It is not clear if the nonmetallic resistivity is caused by strongly correlated electronic effects or is the result of some other effect such as disorder driven scattering.

Work supported by the United States Department of Energy and the National Science Foundation.
Unanticipated Results in U-Nb Alloys

B.F. Woodfield, B.E. Lang, Brigham Young University

G.M. Schmeideshof, Jennifer Quan Occidental College
Numerous competing phases in the U-Nb system
α, α' uranium (orthorhombic)
\(\gamma_0\) uranium (tetragonal)
\(\gamma \text{ uranium (body-centered cubic)} \)
U-Nb Phase Diagram

Weight Percent Uranium

Weight Percent Uranium

Temperature °C

(Nb,7U)

2469°C

977°C 47.8

850°C

840°C

82.5

98.2

1135°C

Temperature °C

977°C

776°C

868°C

Nb Atomic Percent Uranium

U

NISA

Los Alamos
Resistivity

Temperature (K)

Resistivity (Ω cm)

- U Single Crystal
- U 0.25 wt.%Nb
- U 4.00 wt.%Nb
- U 6.00 wt.%Nb
- U 7.25 wt.%Nb
- U 8.00 wt.%Nb
- U 10.0 wt.%Nb

Los Alamos
Superconductivity

![Graph showing the relationship between H_{c2} and T for different samples.](image)

- **H_{c2} (T)** vs. **T (K)**
- Data points for U6Nb, U8Nb, and U10Nb
- Quadratic Fit curves for each sample
Heat Capacity

![Graph showing the heat capacity versus temperature for different compositions of Nb. The graph plots C_p/T (mJ/K/mol) against Temperature (K). Different symbols represent different compositions: U2wt.%Nb (black circles), U4wt.%Nb (orange squares), U6wt.%Nb (blue triangles), and U8wt.%Nb (green diamonds).]
Normalized resistivity

$\rho(T)/\rho(300K)$ vs Temperature (K)

- $U 0.25$ wt.% Nb
- $U 4.00$ wt.% Nb
- $U 6.00$ wt.% Nb
- $U 8.00$ wt.% Nb
- $U 10.0$ wt.% Nb

Los Alamos
Debye Temperature and γ

![Graph showing Debye Temperature and γ vs. wt.% Nb. The graph displays a decrease in γ with increasing wt.% Nb. A line representing Debye Temperature shows an increase with increasing wt.% Nb.](image-url)
Similarity to other alloy systems
