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The objective of this study is to increase the understanding and transparency of chemical biotransfer 

modeling into meat and milk and explicitly confront the uncertainties in exposure assessments of 

chemicals that require such estimates. In cumulative exposure assessments that include food pathways, 

much of the overall uncertainty is attributable to the estimation of transfer into biota and through food 

webs. Currently, the most commonly used meat and milk-biotransfer models date back two decades and, 

in spite of their widespread use in multimedia exposure models few attempts have been made to 

advance or improve the outdated and highly uncertain Kow regressions used in these models. 

Furthermore, in the range of Kow where meat and milk become the dominant human exposure pathways, 

these models often provide unrealistic rates and do not reflect properly the transfer dynamics. To 

address these issues, we developed a dynamic three-compartment cow model (called CKow), 

distinguishing lactating and non-lactating cows. For chemicals without available overall removal rates 
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in the cow, a correlation is derived from measured values reported in the literature to predict this 

parameter from Kow. Results on carry over rates (COR) and biotransfer factors (BTF) demonstrate that a 

steady-state ratio between animal intake and meat concentrations is almost never reached. For meat, 

empirical data collected on short term experiments need to be adjusted to provide estimates of average 

longer term behaviors. The performance of the new model in matching measurements is improved 

relative to existing models—thus reducing uncertainty. The CKow model is straight forward to apply at 

steady state for milk and dynamically for realistic exposure durations for meat COR. 

Keywords: biotransfer factor, BTF, carry over rate, COR, cow, cattle, dairy, milk, meat, Kow 

1 Introduction 

Many chemicals formed in combustion and released to air as well as industrial organic chemicals 

released to air, water, and soil enter humans primarily through food--in particular through meat and 

dairy products (1-3). Agricultural cattle (Bos taurus, or “cows”) are domesticated ungulates and the 

dominant food producing animals for meat and dairy products in most of the world (to a lesser extent in 

Asia and Africa) (4). Risk and life-cycle-impact assessments address chemical transfer from cattle diet 

to food products with default estimates from empirical models. These models are based on incomplete 

and non-representative experimental data (e.g. in term of dynamics) and have large residual errors. In 

this paper we revisit and expand on biotransfer experiments to develop a dynamic, pharmacokinetic 

biotransfer model for lactating and non-lactating cattle. The result is a more precise model, better 

representative of the biotransfer dynamics in cattle and applicable to a broader range of chemical 

properties than any existing model, with explicit characterization of uncertainty. 

In developing this model, we first review the scientific evidence that supports both the conceptual 

structure and detail of the model. From this we formulate the model while confronting several 

significant sources of uncertainty (e.g. variable exposure duration, important loss processes, 

measurement variability, or interpretation of literature data). We evaluate our modeling approach using 

residual error analysis applied to measurements and results from other available models. By imbedding 
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the model performance evaluation into all stages of the model development, we provide users with 

important insights on the capabilities and limitations of the models and their outputs.  

Estimates of human intake through food are often based on residue measurements from market basket 

surveys or duplicate diet studies (5). Although useful for identifying intake, these studies provide little 

insight about pathways from source to dose, since the corresponding sources and animal exposures 

cannot be traced back. Chemicals transport from air, soil, and forage into meat and dairy products is the 

most uncertain among the source-to-dose pathways (6). High cost, political motivation, and ethical 

issues limit the availability of measured cow biotransfer data. This is reflected e.g. in EU’s Registration, 

Evaluation and Authorization of CHemicals (REACH) program. Biotransfer models depend on 

available literature, which provides experimental biotransfer data on only a limited set of compounds of 

concern. We have identified 73 non-dissociating, non-ionizing, organic chemicals tested for biotransfer 

into milk and 42 for meat. We provide these data in detail in the Supporting Information. These limited 

data are also biased towards certain problematic substances, such as PCBs, dioxins/furans and a range 

of pesticides. These data provide our only current opportunity to develop concepts about the nature of 

the processes involved, develop and test models to explain these processes, and extend this knowledge 

to a broader range of chemicals. 

Based on measurements for less than 30 substances, Travis and Arms (7) (T&A) developed a Kow-

based linear regression model, which is still recommended and used widely (8-11), e.g. in EU’s 

Technical Guidance Document on Risk Assessment and the related EUSES model used under REACH, 

to estimate biotransfer factors (BTF) for meat and milk. In the many years since their paper was 

published, only few attempts have been made to improve this approach. Dowdy et al. (12) proposed a 

logBTF regression using the molecular connectivity index (MCI), a quantitative structure-activity 

relationship. According to the authors, the MCI approach provides an estimation model with the lowest 

available residual errors by avoiding parameter uncertainty of the measured Kow. However, this 

conclusion has been contested by a US-EPA report where a larger BTF dataset was included and no 

major improvement compared to T&A was found (11). MCI requires correction factors for polar 
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functional groups that are difficult to apply consistently to BTF (11), limiting its wide acceptance and 

use. Birak et al. (10) evaluated options to reduce the uncertainty of the T&A equations by adding 

additional measurements from recent literature and, in collaboration with US-EPA, proposed a new 

regression model (9) using a polynomial Kow-regression (hereafter called RTI model) which is 

recommended by US-EPA (11). They also introduced a correction factor to Kow for dissociating organic 

acids. But this model severely overestimates the BTF for logKow<5.5 as result of Kow-corrections that 

inflate at the lower range of the regression. The authors also discuss that their model overestimates 

biotransfer of highly metabolized chemicals, therefore producing an upper bound estimate for these 

chemicals (9). Hendriks et al. (13) proposed Kow-linear correlations that distinguish stable (not or slowly 

metabolized) and labile (metabolized) chemicals. This approach requires prior knowledge (which is 

limited for most chemicals) in order to classify chemicals according to their metabolism potential. Their 

correlation for stable chemicals gives similar results as the RTI approach, while for labile substances 

BTF-estimates are 1-2 orders of magnitude lower. 

A limited number of dynamic models for chemical fate in cows are available. Derks et al. (14) 

developed a six-compartment, physiologically based pharmacokinetic (PBPK) model for 2,3,7,8-TCDD 

in lactating cows based on rodent studies. This model is substance specific, complex, and data intensive, 

thus limiting its application to a larger set of chemicals. In an effort to address both PBPK mass balance 

and a broader range of substances, McLachlan (15) published a fugacity-based compartment model for 

the fate of hydrophobic chemicals in a lactating cow. For the limited logKow range of ~5 to ~8.5, we find 

this model reproduces steady-state and dynamic measurements reasonably well, but fails to capture well 

experimental observations for lower Kow values. The same model extended by inhalation, exhalation, 

and urination has later been used by Czub and McLachlan (16) in their ACC-HUMAN describing 

bioaccumulation of lipophilic organic pollutants from air, water, and soil to humans. 

Sweetman et al. (17) reviewed several existing approaches for estimating biotransfer in order to 

recommend appropriate applications and improvements. They observed that biotransfer models need 
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algorithms to adequately address the process of absorption and specifically a decrease in absorption 

with increasing Kow, in the gastro-intestinal tract. 

The goal of our study is to confront and remedy some of the shortcomings of current modeling 

approaches, such as the large residual errors of BTF regressions and the impact of the application of 

steady-state assumptions to non-steady-state conditions and data. To achieve this we specifically 

address the following questions: 

 To what extent do assumed steady-state measurements used in these regression models 

actually correspond to steady-state conditions? 

 How can we apply a dynamic model of chemical behavior in cows to make appropriate use of 

or adjust measurements collected under non-steady-state conditions? 

 What are the key elements of a model that determine its validity over a wide spectrum of 

chemical properties? 

 How do we identify and properly characterize the uncertainties in biotransfer estimates based 

on limited animal experiments? 

2 Methods 

2.1 Carry Over Rate as the Metric of Biotransfer 

The factors typically used to describe the transfer of chemicals from cattle intake to meat and milk are 

the biotransfer factor (BTF) and the carry over rate (COR). Under steady-state conditions, both describe 

the fraction of ingested contaminant actually transferred to animal tissue. The definitions of BTF and 

COR are as follows: 
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where I represents the chemical intake of the cow [kg/day] per individual exposure pathway or 

summed over all pathways, C is the chemical concentration in milk or in meat [kg/kg], milkM& is the milk 
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output rate [kg/day]. Mmeat is a single mass grown, contaminated during a certain exposure duration t, 

and extracted from the system only once—at the end of the animal’s life time. Since COR is the output 

of chemical transferred into milk or meat per unit of chemical intake by the cow, it has a natural limit of 

1, which means that a maximum of 100% of input can be transferred into milk or meat. 

We use the carry over rate (COR) to harmonize comparisons of biotransfer among model and 

experimental results, using Equation (1) to calculate COR on the basis of measured or modeled 

concentrations applying the following assumptions: For CORmilk we assumed an average milking yield 

of 23kg/day (18), and a milk-fat content of 4% (7, 12). We calculated CORmeat by assuming a meat-fat 

content of 25% (7, 12), an average meat-mass per animal of 440kg (including fat) and an average 

exposure duration (based on experimental data) for beef cattle of 81days. 

2.2 Model description 

The scarcity of measurements and the low probability that this situation will change in the future call 

for a deeper understanding and optimal use of these existing data. This can be better provided by 

mechanistic process-based models--those with explicit representations of chemical mass balance--rather 

than by linear or polynomial regressions without insight into underlying processes. We believe that 

interpretation of empirical relationships improves both model reliability and understanding of the 

relationship of COR to chemical properties. Because we cannot repeat the available experiments in a 

more unified way a large part of the variability and uncertainty remains, but can be reduced by better 

understanding the available measures. 

2.2.1 Base model 

We built our model using mass balances and the gut-blood diffusion model by McLachlan (15). The 

proposed CKow model consists of three major compartments--fat, blood, and gastro-intestinal tract 

(gut). Mass transfers in gut and blood are calculated for quasi-steady-state conditions. Transfers in fat 

are based on quasi-steady-state transfers between blood and fat, whereas the mass balance in fat is 

derived dynamically. Milk lipid concentration is assumed to be in equilibrium with blood lipid 

concentration. For degradation and elimination in blood and gut, empirical literature data have been 
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used to characterize overall removal rates (metabolic reactions, blood-to-gut/feces, and urine) and are 

further discussed in the model parameterization section. The model distinguishes lactating and non-

lactating cows by a milk output flow, which also allows modeling the meat concentration of lactating 

cows. Figure 1 gives a conceptual overview of the model. 

 
Figure 1: Conceptual CKow model 

Mass balance in gut and transfer from gut to blood 

The mass balance in the gastro-intestinal tract can be expressed as: 
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where gutM  is the mass in gut [kg], gutC  is the concentration in gut [kg/kg], I the intake (via 

food/water/soil) [kg/day], bg−ϕ  and gb−ϕ the equivalent fluxes of chemical from gut to blood and from 

blood to gut [kg/day] (Equation (8)), bloodC  the concentration in arterial blood [kg/kg], gut
remϕ  is the 

equivalent removal flux in the gut via degradation and fecal output fluxes [kg/day] calculated as: 
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with gut
metk  the metabolic degradation rate in the gut [1/day], gut

wM  and gut
lM  the mass of water and 

lipids respectively in gut [kg], owK  the octanol-water partition coefficient [-], fec
wϕ  and fec

lϕ  the output 

fluxes of water and lipid phase respectively through the feces [kg/day]. 
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2.2.2 Calculation of carry over rates and biotransfer factors 

We first solved the mass balance in gut, blood and fat compartments at steady state to understand and 

explain the main processes revealed by experiments (see sections S3-S5 in Supporting Information for 

the development of the base model). For milk, COR can be understood as the fraction of chemical 

absorbed from gut to blood, multiplied by the fraction of chemical transferred from blood to milk: 

44 344 214434421
milk into excretedfraction blood into  absorbedfraction

)()( milkblood
rem

milk

bggut
rem

bg

milkss
COR

ϕϕ
ϕ

ϕϕ
ϕ

+
⋅

+
= −

−

 
(4)

where bg−ϕ  and gut
remϕ  are defined in Equations (8) (see also section S3 in Supporting Information) and 

(3), ow
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l
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milk K⋅+= ϕϕϕ  is the equivalent output flux of milk [kg/day] and blood
remϕ is the equivalent 

removal flux from blood via degradation, urine advection and blood-gut transfer [kg/day] (without milk 

transfer) as defined in Equation (S6) and discussed in the model parameterization below. For meat, a 

steady-state assumption is often not valid due to the high bioaccumulation potential in fat and to the 

punctual extraction of meat from the system. Developed in sections S6 and S7 of Supporting 

Information, the dynamic version of the model characterizes the evolution of concentrations in meat 

(mostly fat tissues). The corresponding COR can be expressed as the fraction of the chemical absorbed 

in blood that multiplies the residence time of the chemical in fat and a time correction factor that 

accounts for the duration of exposure:  
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where ssfatC is the concentration in fat at steady-state, meat
lf is the lipid fraction in meat [-] and kfat is 

the rate constant for uptake of the chemical in fat [1/day]:  
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Since the transfer between blood and fat is rarely a limiting factor, the system dynamic is 

characterized by the ratio of the overall removal equivalent fluxes from the cow divided by the capacity 

of the fat reservoir. For milk, one gets a similar dynamic equation: 
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2.2.3 Model parameterization 

The transfer from gut to blood is a critical step in the model and represents diffusion transfer between 

gut and blood. McLachlan (15) modeled this as a two-film diffusion resistance with the gut wall as a 

water and an octanol film in series: 
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with QAO=0.58kg/day as the octanol film diffusion transfer coefficient and QAW=4,030,000kg/day as 

the water film diffusion transfer coefficient given for a cow (15).  

A second challenge is to determine the values for the two removal rates in blood and gut. Hendriks et 

al. (13) provided a review of empirical overall removal rates from cow for 36 chemicals covering a 

broad range of Kow values and discussing their relation to Kow. Since the transfer in milk is considered 

separately, we need here to calculate the removal rate excluding the transfer in milk. Section S8 of 

Supporting Information shows that these removal rates are negatively correlated with Kow 

( ow
cow
rem Kk milkno log48.042.1log _ ⋅−= ; R2=0.52). While empirical removal rates will be used in priority 

when available, we use this correlation to estimate the removal for other chemicals. The removal flux in 

blood is given by:  

)(_
ow

cow
l
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w
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blood
rem KMMk milkno ⋅+=ϕ  (9)

with cow
wM and cow

lM  the available masses of water and lipid in the cow. Regarding the relatively short 

duration of the experiments, the cow is not at steady state for persistent lipophilic chemicals (see results 

section below) and only a fraction of the total mass is available for degradation during the experiment. 
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Thus, the empirical removal rate should only be applied to the available fraction of the total fat during 

the removal rate experiment: fatavailable
l

cow
l MfM ⋅≅ . Introducing these experimental removal rates in the 

model, we propose a value of 35.0=available
lf  that minimizes the total residual error between modeled 

and empirical carry over rates (see additional details in section S8). Regarding the uncertainty of this 

parameter, a sensitivity study is presented in the Discussion to test its influence on the model outputs. 

For metabolism and removal mechanisms in gut, there is little operational information available. We 

therefore pragmatically approximated the degradation rate in the gut as a function of Kow using the same 

correlation as the removal rate in blood ( ow
gut
rem Kk log48.042.1log ⋅−= ) to test the model’s ability to 

represent changes in COR while using simplified correlations. Table S1 in Supporting Information 

summarizes all factors required to calculate the COR of Equations (4) and (5) and provides values for 

all used parameters. 

2.3 Defining an appropriate model evaluation process 

Models are used to organize and explore scientific premises and to inform decisions to regulate, 

monitor, or further investigate a broad range of environmental problems. A model performance 

evaluation provides information on the suitability of a model for these tasks. According to the US-EPA, 

model evaluation is the process for generating information over the whole project duration that helps to 

determine whether a model and its analytical results are of a quality sufficient to serve as the basis for a 

decision (19). Model quality has meaning only within the context of a specific model application. For 

estimating COR it is important to establish that our model has captured the relevant processes; is based 

on a broad and representative set of observations, makes predictions that match observations, while 

having an explicitly characterized and improved (lower) residual error with respect to observations. It is 

also important to examine and discuss uncertainties and sensitivities. Finally, we must consider how 

well the model performs its goal of estimating COR based on chemical properties. 

To address these issues, we focus the model performance evaluation on the ability of the model to 

match measured COR values. In addition to the data used by Travis and Arms (T&A) (7) and Dowdy et 
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al. (12) we added new data from 17 recent publications reflecting either feeding or mass balance 

measurements based on identifiable individual animals (see Tables S6 and S7 in Supporting 

Information). These studies covered a much wider range of Kow than earlier studies, especially in its 

upper range, revealing different biotransfer behavior than observed by T&A and Dowdy et al. Where 

possible we considered dynamic concentration curves to compare with our dynamic model, made use of 

data for individual animals, rather than averaging between several animals, and took into account the 

animal-specific exposure duration in our dynamic model. There are no data representing a prolonged 

period that could reveal a convergence towards steady-state concentrations over time and provide 

insight as to whether and when steady state was reached during the experiment. Furthermore, for a 

correct interpretation of experimental data it is useful to have information about the age of the animals 

(especially for meat), which can vary greatly but in many cases was not given. Such inter-individual 

variability between the cows and variations in experimental design, dosing, handling of the animals, 

background residues, etc. contribute to the large variability observed among the individual 

measurements. The resulting experimentally derived carry over rates are provided in Tables S6 and S7 

of the Supporting Information. 

3 Results 

We compare the ability of our proposed and other models to capture observations of COR/BTF for 

milk and meat. 

3.1 Comparison between measured and modeled COR 

Figure 2 illustrates how our CKow model, the T&A model (7) and the RTI model (9) compare to 

measured COR data as Kow varies. Milk (Figure 2a) and meat (Figure 2b) follow very similar patterns. 

The horizontal dashed line marks the physical limit of COR=1 meaning 100% biotransfer, and the 

vertical dashed line marks the Kow value where the T&A model surpasses this physical limit on COR. 

The decrease in uptake for logKow>6 is directly linked to the resistance of the water film in the gut as 

described by Equation (8). The high variability in measured COR in combination with the high 
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uncertainty of Kow measurements in the upper Kow range appears consistent with but does not 

necessarily confirm this decrease. In the low Kow range, the RTI model seems driven by a correction to 

account for very-low-Kow organic acids that were included in the model’s training set. At low Kow, it 

results in a low decrease in COR and the RTI model overestimates the experimental COR by more than 

two orders of magnitude. The downward trend of COR for logKow<6.5 is best represented by the CKow 

model leading to a reasonably good fit. Variations between individual points predicted by the CKow 

model around a given Kow show that empirical removal rates can influence COR by one order of 

magnitude compared to the Kow extrapolation. 

Overall, the CKow models reflect well experimental observations over the whole range of 

2<logKow<9. The model is mainly driven by the three substance-specific properties Kow and overall 

removal in blood and gut, but does not always accurately capture metabolic degradation since empirical 

data are scarce. For CORmeat the remaining variation between model and experimental results is partially 

due to its high sensitivity to the exposure duration and the lack of information on the actual age of the 

animals in the experiments. 

 

a) 

b) 
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Figure 2: a) CORmeat and b) CORmilk plotted against logKow: Comparison of measured data for 73 

substances with the CKow model (dynamic with actual experimental exposure duration), the T&A 

model (7) and the RTI model (9) 

3.2 Dynamic behavior: from experiment duration to steady state 

For carry over into meat the influence of time (i.e. exposure duration) on BTFmeat is studied by applying 

the CKow dynamic to calculate BTF for an exposure duration equal to the average beef-cattle lifetime 

of ~500days in order to get realistic exposure estimates. Figure 3a compares this value with i) BTF 

calculated using reported individual exposure duration for the corresponding experiment and ii) for 

steady-state calculations. An implicit assumption here is that BTFmeat is a cohort-based parameter not 

allowing interpretation about individual animals. Figure 3a shows that using the reported experimental 

exposure duration in the dynamic CKow model tends to underestimate the beef-cattle-lifetime 

biotransfer factor in the high bioaccumulation range by up to one order of magnitude. On the contrary, 

the steady-state assumption overestimates BTFmeat in its high range compared to the typical ~500days 

lifetime. 
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When we conduct the same comparison for BTFmilk (Figure 3b), we find that the reported 

experimental duration also demonstrate an underestimation of BTFmilk, but to a lesser extent than for 

meat, due to the faster removal of lipids with milk. The milk excretion flux leads to a quicker turnover 

as reflected in Equation (4) and steady state is fully reached before 500days as demonstrated by the 

quasi-perfect accord between the 500-days and steady-state calculations. This suggests that steady state 

is an acceptable assumption for milk biotransfer. 

Thus, it is apparent that two adjustments are necessary to adequately represent real exposure 

situations: i) use of dynamic modeling for meat, avoiding short-term exposure or steady-state 

calculations, ii) use of the model to correct the data points from the experimental exposure duration to 

the average beef-cattle lifetime of ~500days in order to get realistic exposure estimates. For this latter 

adjustment, the experimental BTF and COR for meat need to be corrected by the time correction factor 

of Equation (5) applied to the growth duration (tgrowth) divided by the time correction factor applied to 

the experimental exposure duration (texperiment): ( ) ( )eriment
fat

growth
fat tktkBTF

correction eef exp11 −− −−= . 

 
Figure 3: Modeled a) BTFmeat, and b) BTFmilk from the dynamic CKow model for 500days exposure 

compared to the dynamic CKow model for individual observed experimental duration and at steady 

state 
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3.3 Quantification of the precision of all compared models 

To quantify precision for each model against measurements we employ the residual error (RE). The 

RE and its use in such context is discussed by McKone (20). The squared geometric standard deviation 

(GSD2=102RE) represents the geometric factor capturing the two-standard-deviation prediction interval, 

i.e. the 95% confidence interval (geometric mean divided/multiplied by GSD2). We determined RE and 

GSD2 for our model, in both steady-state and dynamic (for the exposure duration corresponding to the 

respective experiment) modes, and for the T&A and the RTI models against all individual 

measurements and the arithmetic mean of individual cows per substance. Figure 4 compares the GSD2 

for logCORmeat and logCORmilk from the respective models. Further details are given in section S10 of 

Supporting Information. 

 
Figure 4: Comparison of GSD2 for CORmeat and CORmilk from the CKow models (steady-state and 

dynamic), the RTI (2005) model, and the T&A (1988) model, plotted against measured CORmeat from 

42 chemicals and measured CORmilk from 73 substances 
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A clear reduction in uncertainty is demonstrated for the steady-state and dynamic CKow model for 

both meat and milk biotransfer compared to the other models. The reduction in precision of the steady-

state assumption for CORmeat is reflected by the GSD2. The dynamic and the steady-state CKow model 

significantly reduce the 95% confidence interval to two orders of magnitude, clearly performing better 

than the other models. 

4 Discussion 

We introduce the CKow model and demonstrate that it provides a more scientifically defensible basis 

and increased precision in biotransfer modeling for meat and milk. This is important when modeling 

multimedia fate and exposure measures such as the intake fraction (iF)—the fraction of an emission 

taken in by the population (1). When changing from T&A to the simplified CKow model we found 

differences in total ingestion iF of up to a factor five for logKow>6 (see section S11 in Supporting 

Information). By expressing COR as a multiplication of interpretable factors, we identified key model 

elements and captured a wide spectrum of Kow values while retaining a model that is transparent and 

easy to use. Proposing an empirically-based correlation for the removal rate as a function of Kow makes 

the CKow model a practical improvement for assessment of human exposure through meat and milk. 

Our approach also offers more insight for the processes involved in biotransfer and their influence—

something that is not available from linear regressions and polynomial fits to measurements. 

The CKow approach also avoids current problems with regression models. For example, for 

logKow>6.7, the commonly-used Travis and Arms (7) relationship gives a COR that implies that an 

animal transfers more chemical to milk or tissue than it consumes, meaning that, for e.g. dioxin, the cow 

violates conservation of mass. EU’s TGD avoid this by truncating the regressions at the maximum and 

minimum Kow used in the underlying data (8), resulting in a constant COR outside the Kow range of 

T&A’s training set. Similarly, Bennett et al. (1) reported this problem and suggested an upper limit of 

BTF=0.1. In both cases, our results indicate that the resulting COR are too high. Because Bennett et al. 

(1) observe that meat and milk intake are the dominant pathways (i.e. >50% of overall intake) for 

logKow≥6 (Figure S2 in Supporting Information) it is important to assure reasonable model performance 



 

18

for high Kow-ranges. The physically impossible transfer rates obtained from the T&A model in that Kow-

range reveals the problem of using a model outside its calibrated range. 

To address the discrepancy caused by interpreting meat biotransfer experiments as representing life-

span or steady-state conditions (as done by all existing models), we recognize and account for chemicals 

that may never attain steady-state levels in a beef cow in its 1-2 years lifespan. Contrasting actual 

experimental conditions, our results show that the optimum exposure duration in cattle to predict 

average intake by humans, is the average beef-cattle lifetime of ~500days. There is thus a need to find 

an appropriate assumption and correction factor for re-interpreting COR for the existing results of 

different experiments. This also applies to all existing models as these currently predict CORmeat for 

very short exposure of several weeks only, due to their dependency on the experimental measurements, 

thus likely underestimating long-term BTFmeat. As a clear step ahead from current Kow-correlation-based 

models, these corrected data points can serve as a more robust basis for a new correlation model. Steady 

state should be assumed with great caution for meat biotransfer and might only be appropriate for 

specific cases, e.g. dairy cows with a considerably longer life span and almost constant chemical 

excretion flow via milk, or for chemicals with a high metabolic rate. However, for milk it was 

confirmed to be appropriate in most cases. 

The fact that experimental data show a stronger decrease in COR with decreasing Kow than explained 

by the RTI model has several potential explanations. The increase of removal rates with decreasing Kow 

makes excretion the dominant loss process at lower Kow. Another, perhaps complementary or even 

alternative, interpretation is a faster metabolism for most hydrophilic substances. The obtained accuracy 

is sufficient in the low range for most applications, since it is likely to be an exposure pathway of 

secondary importance in that range. US-EPA proposes a metabolism factor for bis(2-

ethylhexyl)phthalate to correct the RTI model resulting in a BTF closer to experimental observations, 

but recognizing that the lack of empirical data prevents the development of such factors for other 

substances (11). While the CKow model represents well the general trend of empirical observations and 

fulfills the respective modeling recommendation by Sweetman et al., (17) an important limitation is the 
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measuring and modeling of metabolism, whose enormous variability among individual animals sets an 

ultimate limit to model reliability. 

Model evaluation demonstrated increased precision for both the dynamic and steady-state CKow 

models, reducing uncertainty (GSD2) by factor ~24 for CORmilk and ~9 for CORmeat compared to the 

T&A model. The remaining variability is harder to reduce as it is, among other factors, due to 

measurement uncertainty, which can be very large for data dating back 50 years, and remains important 

for recent measurements especially for high Kow. Other important sources of variability and uncertainty 

are differences between individual animals, parameter uncertainty for Kow, and transformation factors as 

well as model uncertainty not captured by RE. Another uncertain parameter is the fraction of the total 

fat mass available for degradation during the experiment. A sensitivity study was performed regarding 

its influence on RE: there is limited variation in GSD2 when varying this parameter within a plausible 

range of 0.15 to 0.5, the GSD2 varying from 29 ( 35.0=available
lf ) to between 39 and 36 for meat and 

from 23 to between 25 and 31 for milk, thus an increase of maximum 35% in GSD2. The influence of 

this parameter on the output is however not negligible and further investigation is required, e.g. using 

the dynamic model to better analyze and understand the individual data reported on removal rates. 

One can argue that in the Kow range, relevant for meat and milk exposure, the RTI model is acceptable 

because the overestimation in the lower Kow range is not a significant issue. However, we believe that 

both scientific value of understanding and representing well the lower Kow range in one harmonized 

model and the need to avoid bias when comparing or ranking hydrophilic to lipophilic compounds (as 

done in comparative risk or life cycle assessment) favors the CKow approach. For example Bennett et 

al. (1) demonstrated that for logKow<6 and less volatile compounds, grain and produce provide the 

dominant food exposure pathways. Since cow manure might be used as natural fertilizer, this can 

significantly contribute to the soil and ultimately the plant concentrations for certain chemicals and thus 

enter the human food chain via this pathway and should hence be realistically modeled. 

Both CKow models are limited to non-dissociating, non-ionizing organic chemicals, the substance 

class of all measured COR used for model evaluation. Due to inherent averaging and assumptions the 
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CKow approach is applicable only to herds but not to single animals, which is in line with observations 

by Sweetman et al. (17). Because COR measurements are available only in the range of 2≤logKow≤9, the 

CKow models were only evaluated in this range and should not be applied to chemicals outside this 

interval. As with any model, whenever measured data of sufficient quality are available, these should be 

used in preference over the model. 

From a policy and decision making perspective, the evidence presented here on existing correlations, 

specifically the T&A model, calls into question their use for very lipophilic chemicals. The discrepancy 

at high Kow between the importance of meat/milk exposure pathways for human health and available 

knowledge, calls for increased research in order to better understand and reduce possible risks. 

Further research should address questions such as better measuring bioavailability in the gut and 

options for using chemical-specific measurements of metabolic degradation. Interpreting clearing 

curves showing the decrease in concentration over time after exposure ends could provide valuable 

insights into metabolic degradation. Furthermore, Kow is an uncertain parameter, specifically in its upper 

range and, as a measured property, always accompanied by parameter uncertainty, which could be 

avoided by replacing it with a more stable parameter, such as a QSAR metric, as attempted by Dowdy et 

al. (12). The selected QSAR metric should be substance specific, derived from little or no experimental 

measurements, well correlated with Kow and/or COR/BTF, and easily obtained. COR for other chemical 

classes, such as dissociating organics, is clearly a subject of further investigation, and current models 

(for generic organics) should not be applied to these other substances. 

Acknowledgements 

The authors acknowledge financial support of the European Commission through the "Sustainable 

Energy Systems"–research program given to the NEEDS-project (EC Project number 502687) at the 

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. T. McKone was supported in part by 

the US-EPA through Interagency Agreement No. DW-988-38190-01-0, with the Lawrence Berkeley 

National Laboratory operated for the US Department of Energy (DOE) under Contract Grant No. DE-



 

21

AC02-05CH11231 and in part by the US Centers for Disease Control and Prevention (CDC) through 

Cooperative Agreement Number U19/EH000097-03.DE-AC02-05CH11231. The authors are grateful to 

Mark Huijbregts for providing the measured removal rates data set used in (13) in Excel format. 

Supporting Information Available 

Tables of all measured data including BTF and COR calculations and the references, the derivation of 

mass balances, differential equation systems and solutions, a list of symbols, additional figures, the 

parameters used in the CKow models, and further discussions on model performance evaluation and on 

the effect of improved COR on a multimedia exposure estimate (intake fraction) can be found therein. 

This information is available free of charge via the Internet at http://pubs.acs.org. 

Literature Cited 

(1) Bennett, D. H.; Margni, M.; McKone, T. E.; Jolliet, O. Intake fraction for multimedia pollutants: 
A tool for Life Cycle Analysis and comparative Risk Assessment. Risk Anal. 2002, 22 (5), 903-
916. 

(2) McLachlan, M. S. Mass balance of polychlorinated biphenyls and other organochlorine 
compounds in a lactating cow. J. Agric. Food. Chem. 1993, 41, 474-480. 

(3) Travis, C. C.; Hester, S. T. Global chemical pollution. Environ. Sci. Technol. 1991, 25, 814-819. 
(4) FAO Global livestock production and health atlas (glipha). www.fao.org/ag/aga/glipha/index.jsp 

(May 2009),  
(5) Berry, M. R. Advances in dietary exposure research at the United States Environmental 

Protection Agency - National Exposure Research Laboratory. J. Expo. Anal. Environ. 
Epidemiol. 1997, 7 (1), 3-16. 

(6) McKone, T. E.; Ryan, P. B. Human exposures to chemicals through food chains - an uncertainty 
analysis. Environ. Sci. Technol. 1989, 23 (9), 1154-1163. 

(7) Travis, C.; Arms, A. Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. 
Technol. 1988, 22 (3), 271-274. 

(8) EC Technical Guidance Document on Risk Assessment in support of Commission Directive 
93/67/eec on Risk Assessment for new notified substances Commission Regulation (EC) no 
1488/94 on Risk Assessment for existing substances Directive 98/8/EC of the European 
Parliament and of the council concerning the placing of biocidal products on the market - part i; 
Institute for Health and Consumer Protection, European Chemicals Bureau, European Joint 
Research Centre (JRC) Ispra: Italy, 2003. 

(9) RTI Methodology for predicting cattle biotransfer factors; RTI Project Number 08860.002.015, 
Research Triangle Institute: Research Triangle Park, NC 27709-2194, September 23, 2005, 
2005; p 25. 

(10) Birak, P.; Yurk, J.; Adeshina, F.; Lorber, M.; Pollard, K.; Choudhury, H.; Kroner, S. Travis and 
arms revisited: A second look at a widely used bioconcentration algorithm. Toxicol. Ind. Health 
2001, 17 (5-10), 163-175. 



 

22

(11) USEPA Human health Risk Assessment protocol for hazardous waste combustion facilities.; 
United States Environmental Protection Agency, Office of Solid Waste and Emergency 
Response: Washington, DC 20460, 2005. 

(12) Dowdy, D.; McKone, T. E.; Hsieh, D. P. H. The use of the Molecular Connectivity Index for 
estimating biotransfer factors. Environ. Sci. Technol. 1996, 30, 984-989. 

(13) Hendriks, A. J.; Smitkova, H.; Huijbregts, M. A. J. A new twist on an old regression: Transfer of 
chemicals to beef and milk in human and ecological risk assessment Chemosphere 2007, 70 (1), 
46-56. 

(14) Derks, H. J. G. M.; Berende, P. L. M.; Olling, M.; Everts, H.; Liem, A. K. D.; De Jong, A. P. J. 
M. Pharmacokinetic modeling of polychlorinated dibenzo-p-dioxins (pcdds) and furans (pcdfs) 
in cows. Chemosphere 1994, 28 (4), 711-715. 

(15) McLachlan, M. S. Model of the fate of hydrophobic contaminants in cows. Environ. Sci. 
Technol. 1994, 28, 2407-2414. 

(16) Czub, G.; McLachlan, M. S. A food chain model to predict the levels of lipophilic organic 
contaminants in humans. Environ. Toxicol. Chem. 2004, 23 (10), 2356–2366. 

(17) Sweetman, A. J.; Thomas, G. O.; Jones, K. C. Modelling the fate and behaviour of lipophilic 
organic contaminants in lactating dairy cows. Environ. Pollut. 1999, 104 (2), 261-270. 

(18) BANR Nutrient requirements of dairy cattle. Seventh revised edition ed.; National Academy 
Press: Washington D.C., 2001; p 381. 

(19) USEPA Draft guidance on the development, evaluation, and application of regulatory 
environmental models. http://cfpub.epa.gov/crem/crem_sab.cfm  

(20) McKone, T. E. The precision of QSAR methods for estimating intermedia transfer factors in 
exposure assessments. SAR QSAR Environ. Res. 1993, 1 (1), 41-51. 

 
 



 

23

Brief 

A dynamic three-compartment cow model that distinguishes lactating/non-lactating cows and confronts 

key uncertainties increases the precision and transparency of models for biotransfer into meat and milk. 

 


