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Abstract

It is anticipated that in the near future disk storage systems will surpass application servers and will
become the primary consumer of power in the data centers. Shutting downof inactive disks is one of the
more widespread solutions to save power consumption of disk systems. This solution involves spinning
down or completely shutting off disks that exhibit long periods of inactivity and placing them in standby
mode. A file request from a disk in standby mode will incur an I/O cost penalty as it takes time to spin up
the disk before it can serve the file. In this paper, we address the problemof designing and implementing
file allocation strategies on disk storage that save energy while meeting performance requirements of file
retrievals. We present an algorithm for solving this problem with guaranteedbounds from the optimal
solution. Our algorithm runs in O(nlogn) time where n is the number of files allocated. Detailed simulation
results and experiments with real life workloads are also presented.

1. Introduction

Enterprises, research institutions and governmental agencies now provide on-line or near-line access to
massively large data resources. The declining cost of commodity disk storage has now made such data
resources very affordable for large data centers. However, maintaining these data resources over hundreds
and thousands of spinning disks comes at a considerable expense of power usage. A recent paper states
that about 26% of the energy consumption at data centers is attributed to diskstorage systems [7]. This
percentage of disk storage power consumption will continue to increase, as faster and higher capacity disks
are deployed with increasing energy costs and also as data intensive applications demand reliable on-line
access to data resources. It has become necessary to employ strategiesto make disk system usage more en-
ergy efficient independent of manufacturers efforts. The problem isequally significant in high performance
scientific computing centers, such as NERSC [10], that manage large scaledata resources that are accessed
by collaborating scientists around the world.

The solution is being addressed at two levels:physical deviceandsystemslevel. At the physical device
level, disk manufacturers are developing new energy efficient disks [14] and hybrid disks (i.e., disks with
integrated flash memory caches). At the system level, a number of integratedstorage solutions such as
MAID [4], PARAID [16], PERGAMUM [15] and SEA [17] have emergedall of which are based on the
general principle of spinning down and spinning up disks. Disks configured either as RAID sets or as
independent disks, are configured with idle time-out periods, also calledidleness threshold, after which they
are automatically spun down into a standby mode. A read or write I/O request targeted to a standby disk
causes the disk to spin-up again in order to service it. This of course comesat the expense of a longer



response time. A spun up disk stays spun up until it becomes idle again for duration of the time-out period
(see Figure 1).
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Figure 1. Power consumption of the different disk modes and transition times

1.1. Proposed Approach

Most existing research work in storage power management assumes that the contents of the disks are
static and power saving can be realized during lengthy idle periods of the disks. Our approach is different
(but complementary) in that we also allow reorganization of disk contents either dynamically or at periodic
reorganization points in order to create more opportunities for power saving.

To understand the reasoning behind this approach, let us consider a case, where the file accesses are
uniformly distributed among all the disks. There will be very little power saving inthis case, since there
are relatively short idle periods on each disk which are not sufficient tojustify powering the disk down and
then up again. Now, consider another case, where the disks are split intotwo groups, with the great majority
of the accesses being made to the first group of files with high frequency of accesses. The infrequent file
accesses go to the second group of disks with less frequently accessedfiles. This creates longer idle periods
on the second group with an opportunity to shut down these disks for power saving. The more disks we have
in the second group, the more power we can save. The trade-off however, is that the frequent accesses to the
disks in the first group, may result in longer response times. Thus, we have to load these disks maximally,
but without exceeding some guaranteed acceptable response times. As shown in Section 5, our strategy
improves power savings also with the presence of a cache in front of the disk system (or individual disk
caches).

Our experience with the workload ofread accessesto the data resources at NERSC [10], one of the
national high performance computing centers, shows that the access frequencies of files follow Zipf-like
distributions. That is, at periodic intervals there are a large number of file access requests that are directed
to a small number of files. We propose to exploit these observations for energy efficiency, using a strategy
to transform these file access patterns to disk access patterns through fileallocation strategies.

In this paper we focus on read requests, in case the access sequenceincludes write requests we propose to
follow one of the energy-friendly approaches given in [15], i.e., write files into an already spinning disk if
sufficient space is found on it or write it into any other disk (using best-fitor first-fit policy) where sufficient
space can be found. The written file may be re-allocated to a better location later during a reorganization
process.

The main contributions of this paper are:

• The use of file allocation strategies to significantly reduce energy consumption of disk systems. These
strategies can be used in conjunction with other techniques in the literature.

• We present a mapping of the problem of file allocation on disks with maximal power conservation and
response time constraints to a generalized bin packing problem calledtwo-dimensional vector packing

2



problem (2DVPP). This mapping allowed us to use algorithms that solve 2DVPP with provable bounds
from the optimum.

• We give an algorithm that improves on the running time of a 2DVPP algorithm [3](that has the best
known bounds from optimality), fromO(n2) to O(nlogn)

• The use of extensive simulations with both simulated and realistic workloads andaccurate disk char-
acteristics, to calculate the energy savings and response times achieved byusing our file allocation
techniques as compared with random file allocation. We demonstrate that our techniques achieve sig-
nificant energy savings over a wide range of workload parameters values with minimal response time
degradation.

Although our solution may be characterized as an off-line solution, it can beapplied in a semi-dynamic
manner by accumulating access statistics over periodic intervals and performing reorganization of file al-
locations. Another use of the solution presented is for computing the percentage of disks that must be
maintained on-line to meet file access response time under budget constraints.

The remainder of the paper is organized as follows. In the next section wepresent the background and
related work on energy saving approaches in large scale disk-storagebased data centers. We present our
heuristic algorithm in Section 3 where a variant for a special case observed in our generated workload based
on real life logs is also given. A discussion of our simulation environment is given in Section 4. Section 5
presents our experimental results and we conclude in Section 6 where we also discuss directions for future
work.

2. Related Work

The general techniques being advocated in this work are based on some energy conservation techniques
used in computing. In particular, we employ three principles: massive arrayof idle disks (MAID) [4],
popular data concentration [11] and energy-aware caching [20]. Similar to the work in [11], our approach
is to concentrate short term and frequent data accesses on a fraction of the disk arrays, while the rest are,
for most times, set in standby mode due to their long periods of inactivity. Modern disks provide multiple
power modes: active, idle, and standby modes and most operating system can be configured for the power
management of these disks.

Conserving energy in large scale computing has been recently explored in[6, 11]. Colarelli and Grun-
wald [4] proposedMAID for near-line access to data in a massively large disk storage environment.They
show, using simulation studies, that a MAID system is a viable alternative and capable of considerable en-
ergy savings over constantly spinning disks. A related system was implemented and commercialized by
COPAN systems [5,6]. This system, which is intended for a general data center, is not focused on scientific
applications and is not adaptively reconfigurable based on workloads.Further, the disks are remotely acces-
sible via NFS mounts. Our approach uses iSCSI protocol for remote accesses which provides a better I/O
bandwidth than NFS.

The theory of Dynamic Power Management of disks has also drawn a lot ofattention recently from the
theoretical computer science community (see [8] for an extensive overview of this work). Most of this
work considers a single disk only and attempts to find an optimal idle waiting period(also called idleness
threshold time) after which a disk should be moved to a state which consumes lesspower. More specifically,
the problem discussed in these research works is based on the assumptionthat the disk can be transitioned
amongn power consumption states where theith state consumes less power than thej th state fori < j. The
disk can serve file requests only when it is in the highest power state (thenth state) which is also called the
active state. The system must pay a penaltyβi if a request arrives when the disk is in theith state, the penalty
is proportional to the power needed to spin up from statei to the active staten. The penalty is decreasing with

3



the state number, i.e.,β j < βi , for j > i, andβn = 0. The problem is that of devising online algorithms for
selecting optimal threshold times, based on idle periods between request arrivals, to transition the disk from
one power state to another. The most common case has only two states namely, active state (full power) and
standby (sleep) state. The quality of these algorithms is measured by their competitive ratio which compares
their power consumption to that of an optimal offline algorithm that can see the entire request sequence in
advance before selecting state transition times. For a two state system there is atight bound of 2 for the
competitive ratio of any deterministic algorithm. Response time penalty is not considered in this work.

Another theoretical work which also deals with the affects of power management policy on the latency
of a single disk is described in [13]. Our work is complementary to that work as we consider multiple
disks rather than just one disk and attempts to allocate files among the disks to improve the total power con-
sumption of the storage system subject to response time constraints. Other energy conservation techniques
proposed are addressed in [2,9,11,15,16,19].

3. Optimal File Allocation Algorithm

This section deals with the combinatorial problem of allocating files to disks so that the minimum number
of disks are used and the response time for file requests is below a specified threshold. To define this problem
formally, we first introduce some notations. We start with a set ofn files. For theith file let si denote its size
and letpi denote the fraction of accesses to it relative to the total file accesses in a unit of time. We observe
that the amount of time a disk will spend on servicing requests for a given fileis strongly correlated with the
frequency of accessing the file as well as its size. For simplicity, we therefore define the load of theith file,
l i asl i = Rpiµi whereµi is the service time for the file which is a function of its size, i.e.,µi = f (si) andR is
the rate at which requests arrive in the system. Any function,f (si) can be used in the proposed algorithms.
With this definition, the load corresponds to the fraction of the disk service time spent on servicing theith

file. We useS to denote the total storage capacity of a disk that we are allowed to use, andL to denote the
load capacity of a disk. We assume the response time constraint is satisfied, ifthe cumulative loads of files
on any disk are belowL. In our experiments, we defineL as a percentage of the maximum disk transfer rate.
Formally, we define our problem as follows.

Definition 1. Given a list of tuples ((s1, l1),(s2, l2), . . .(sn, ln), and bounds S and L, find a minimum number
of sets D1,D2, . . . ,Dk, so that each tuple is assigned to a set Di and∑(si ,l i)∈Di

si ≤ S and∑(si ,l i)∈Di
l i ≤ L for i =

1, ...,k.

This problem has been studied in the literature as the2-dimensional vector packing problem(2DVPP).
It is known to be NP-Complete and several approximation algorithms for it areknown [3]. We will now
describe an approximation algorithm, calledPackDisks, which improves on the algorithm in [3], by in-
troducing an efficient data structure that cuts down the time complexity fromO(n2) to O(nlogn). Our
file allocation algorithm can be applied periodically based on specified reorganization intervals or triggered
automatically whenever the energy consumption of the system exceeds some specified threshold or the re-
sponse time exceeds the guranteed upper bound.

3.1. The Algorithm

The input to the algorithm is a collectionF of n elements corresponding to the files to be allocated.
Each element (si , l i) corresponds to a filefi with size si and loadl i . For simplicity, we will normalize
the constraints based on the disk capacityS and loadL so they are both equal to 1 and thesi ’s and l i ’s
represent fractions ofS andL respectively, so they are all within the range[0,1], i.e., si = (size of fi)/S)
and l i = ( load of fi)/L. We also assume that allsi ’s andl i ’s are bounded by some small constant 0< ρ < 1.
We will later prove that the number of disks loaded by the algorithm is within a factor of (1/(1−ρ) of the
optimum.

4



Our algorithm uses amax heapdata structure which is a full binary tree with keys on the nodes. In amax
heap, the following property is always maintained: if nodey is a child of nodex , thenkey(x) ≥ key(y). In
the running time analysis we use the fact that amax heapcan be created inO(n) time and maintained after
an insertion or removal of an element inO(logn) time (See [1] for more details) . This implies that the key
of the the root node is the maximum of the set of keys. Before running the algorithm we will construct two
heaps~Sand~L. The heaps~Sand~L are constructed fromF as follows. LetST(F) contain all elements from
F wheresi ≥ l i (also called size-intensive elements) andLD(F) all the other elements (also called load-
intensive elements), i.e.,ST(F) = (si , l i) : si ≥ l i andLD(F) = (si , l i) : l i > si . For each element inST(F),
we compute the value~si = si − l i and construct a heap~Swith~si ’s as keys. Similarly we compute the value
~l i = l i−si for each element ofLD(F) and construct a heap~L with~l i ’s as keys. We keep with every element
of each list its original index in the setF . The algorithm given below then partitions the elements of~Sand
~L into subsetsDi . This in turn induces an allocation of the files represented byF to disks where the original
indices of the elements allocated to a subsetDi correspond to the files allocated to theith disk. For that
reason we will use the terms subset or diskDi interchangeably. For a setXwhereX ⊆ F we denote byS(X)
the total storage required byX and byL(X) the total load ofX, i.e.,S(X) = ∑

(si ,l i)∈X
si ; andL(X) = ∑

(si ,l i)∈X
l i .

A subsetDi is s-completeif 1 ≥ S(Di) ≥ (1−ρ) and it isl-completeif 1 ≥ L(Di) ≥ (1−ρ). It is called
completeif it is both s-complete and l-complete. Intuitively, packing all disks such that they are either
complete, s-completeor l-completeguarantees that our algorithm will not use more disks than a factor of
1/(1−ρ) from the optimal algorithm.

The algorithm assigns elements to one disk at a time, called the current disk. The current disk is packed
with elements (one at a time) until it is determined that it cannot take anymore elements or it has enough
elements to guarantee that the specified bounds from optimality will be satisfied.The current disk is then
closed and a new empty disk becomes the current disk. The main idea of the algorithm is to maximize the
number of elements packed into a disk by selecting the next packed element to be either storage-sensitive or
load-sensitive based on the the current state of the packed disk. More specifically, the next element assigned
to a disk which is dominated by storage-intensive elements (i.e.,S(Di) ≥ L(Di)) comes from the load-
intensive heap and vice versa. The next few lemmas and theorem prove that the algorithm terminates within
O(nlogn) steps with the number of subsetsDi created bounded from the optimum. The main improvement
we made to the algorithm of [3] is to better organize the items added to a setDi in order to avoid searching for
an element that needs to be removed from it and placed back in the heaps~Sor~L. This is done by separating
the items added to a subsetDi into two lists, namely,s-list[i] andl-list[i] , based on whether an item’s origin
is from~S or~L. As proven below, this allows us to find an appropriate element to be removedfrom Di in
O(1) time rather thanO(n) time required by the algorithm presented in [3]. For lack of space, we state the
necessary lemmas and only include here proofs of the lemmas that show that the algorithm terminates in
O(nlogn) time and packs the disks within the specified bounds from optimality after our modifications.

Lemma 1. If S(Di)≥ L(Di) and S(Di)+sj > 1 (lines 5 and 7 of the algorithm), then the last element~sk in
s-list[i] satisfies the condition S(Di)−L(Di)≤~sk (line 8).

Lemma 2. If L(Di)≥ S(Di) and L(Di)+ l j > 1 (lines 12 and 14 of the algorithm), then the last element~lk
in l-list[i] satisfies the condition L(Di)−S(Di)≤~lk (line 15).

Lemma 3. After removing~sk and adding~l j to Di (lines 10 and 11), the disk Di is complete.

Lemma 4. After removing~lk and adding~sj to Di (lines 17 and 18), the disk Di is complete.

Lemma 5. After exiting the while loop (line 22), all disks except the last one are complete, and at most one
of the heaps~S or~L is non-empty.

Lemma 6. After performing PackRemainingS (or Pack RemainingL) all disks, except possibly the last one,
are either s-complete or l-complete.
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Lemma 7. Given a set F of n elements, Algorithm PackDisks requires O(nlogn) steps.

Proof. As mentioned before, the formation of the heaps~Sand~L can be done inO(n) steps For each element,
the algorithm removes it from a heap and packs it into a disk exactly once, except under the condition of line
7 or line 14 where an element is removed from the currently packed disk andplaced back in one of the heaps
~Sor~L respectively. However by Lemmas 3 and 4, whenever this event happens, the current disk becomes
complete and the packing of a new disk is started. Since the algorithm never uses more thann disks, the
total number of element removals is at mostn. Maintaining the heap structure after removal of the largest
element or insertion of an element can be done at a cost ofO(logn). Thus the running time of the algorithm
is O(nlogn) as claimed.

Function Pack Remaining S

begin1

while ~S 6= /0 do2

remove next element~sj from list~S ;3

if S(Di)+sj > 1 then4

/* start loading a new disk */
i← i +1; Di ← /0 ;5

s-list[i] ← /0; l-list[i] ← /06

insert~sj at the end of thes-list[i]7

end8

Function Pack Remaining L

(Same as PackRemainingS() with~Sand~sj replaced with~L and~l j respectively )1

For completeness we include a proof of the bound on the number of packeddisks used by the algorithm,
it is similar to the one found in [3].

Theorem 1. Let the minimum number of disks needed to pack F by any algorithm be denoted by C∗ and let
the number of disks used by Algorithm PackDisks be CPD then

CPD≤
C∗

1−ρ
+1

Proof. ClearlyC∗ ≥max( ∑
(si ,l i)∈F

si , ∑
(si ,l i)∈F

l i), as ∑
(si ,l i)∈F

si ; and ∑
(si ,l i)∈F

l i are lower bounds on the number of

disks required to satisfy the total size and load requirements respectively.
On the other hand, by Lemmas 5 and 6, the algorithmPackDiskspacks all subsetsDi (except possibly

for the last one) such that exactly one of the following 3 cases occurs:

1. all subsetsD′isarecomplete,

2. all subsetsD′isares-complete, one or more are notl-compete,

3. all subsetsDi ’s arel-complete, one or more are nots-complete.
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Under case 1, the theorem follows directly. Under case 2,

CPD≤ 1+
1

1−ρ ∑
(si ,l i)∈F

si ≤ 1+
1

1−ρ
C∗.

An analogous argument also works under case 3 thus proving our bound.

3.2. A Variant of the Algorithm

The advantage ofPackDisks may be diminished in some special cases, which were observed in our real
life workload log, when many users request a batch of files of similar sizes all at once. As PackDisks tends
to pack many “same size” files on the same disk it may cause long response time delays for such batched
requests. In fact, this case degrades the effect of all the algorithms which tend to pack similar-size files into
one disk. To avoid the long response time caused by this case, we introducesome randomization in the
packing by modifying the PackDisks algorithm to partition the disks into groups and then pack filesgroup-
by-group, instead of disk at a time. The disks within a single group are packed in a round-robin manner. We
call this variant of the algorithm PackDisks v, where v denotes the number of disks in one group.

4. The Simulation

We developed a simulation model to examine the tradeoffs between power saving and request response
time. Our simulation environment was developed using SimPy (a simulation framework in Python). The
environment consists of a workload generator, a file dispatcher, and a group of hard disks. The workload
generator produces file requests based on the configuration parameters given in Table 1. We followed the
request patterns used in [17] for generating file sizes and access frequencies using Zipf-like distributions. In
this simulation, we assumed that a file has an inverse relation between its accessfrequencypi and its size
si , i.e., the access frequencies of the files follow a Zipf-like distribution while thedistribution of their sizes
follows inverse Zipf-like distribution. Interestingly, in Section 5, where we analyzed real life work logs we
found that this assumption doesn’t always hold. Assuming the arrival rate of requests follows a Poisson
distribution with expected valueR, the access rater i for the file fi is pi*R. In this simulation we assumed
that a file request always asks for the whole file. Then the disk load contributed by the filefi is l i = r i ∗ si .
Note that in case we would like to model requests for parts of the file, only the value ofsi can be adjusted
accordingly. Once a request is generated, the file dispatcher forwards it to the corresponding disk based on
the file-to-disk mapping table, which is built usingPackDisks, our file allocation algorithm. In addition, for
the purpose of comparison of power consumption and response times, we also generated a mapping table
that randomly maps files among all disks. The mapping time in the dispatcher is ignored since it is negligible
when compared with the access time of the big files. Table 2 shows the characteristics of the disk drive used
in the simulation. Using the specifications in [14, 18], we built our own disk drive simulation modules. To
save energy, the hard disk would be spun down and go into standby mode (Figure 1) after it has been idle for
a fixed period which is calledidleness threshold[11, 12]. Similar to [11, 12], we set theidleness threshold
to be equal to the time that the disk has to be in the standby mode in order to save thesame amount of power
that will be consumed by spinning it down to standby mode and subsequently spinning it up to the active
mode.

5. Experimental Results

In the following discussion, we examine the behavior of the PackDisks algorithm under varying levels
of disk load constraints,L. The value ofL is expressed as a fraction of the maximum transfer rate of the disk
(72MB/s). The results for the group-version of PackDisks is ignored here, due to space limitation, but are
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similar to those of PackDisks because the bursty-arrival phenomenon mentioned does not exist under the
Poisson arrival.
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Figure 2. The ratio of power saving v.s. the arrival rate of fil e access

As shown in Figure 2, when the expected arrival rate of file requests,R, is less than 4 per second, over
60% of power consumption can be saved by using the PackDisks algorithm, compared to random placement
of files. However, the ratio of power saving, as shown in Figure 5, may decrease along with increasingR,
since more active disks are necessary to support the increasing load contributed by these files accesses.
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Figure 3. The ratio of the Pack Disks algorithm to the random allocation in terms of respons e
time

Figure 3 shows the response-time ratio of the PackDisks algorithm to random allocation for different
L’s. The response time in PackDisks is 0.5∼2.5 times of that under the random allocation. Figure 4 shows
the trade-offs between power cost and access response time for PackDisks algorithm while varyingL, the
constraint on the disk load and settingR at 6. As expected, increasingL can allow us to store files in fewer
disks and therefore save more power. This is done at the expense of longer request queues for each of the
active disks resulting in longer response times.

5.1. Generated Workload from NERSC Traces

To further demonstrate the effect of PackDisks, we collected real life workload logs from NERSC [10]
and then used these in the workload generator. NERSC manages large scale scientific observational and
experimental data, which are accessed by collaborating scientists aroundthe world. File requests arriving
in the center were logged for 30 days (between May 31 and June 29, 2008). There are 88,631 distinct files
involved in the 115,832 read requests. The average arrival rate (persecond) of the requests is 0.044683. The
mean size of files accessed by these requests is 544 MB, which incurred about 7.56 sec of service time when
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the disk transmission rate is 72MBps. The minimum space required for storing all the requested files is 95
disks. Next we classified the 88,631 files into 80 bins by their size.

We then computed the proportion of the number of files in each bin compared withthe total number of
files. The computation shows that the distribution of file sizes is closely related toa Zipf distribution because
the proportion decreases almost linearly in the log-log scale. Besides, in thisworkload, no significant
relationship can be observed between the file size and its access frequency.

In our experiment, we let the random placement algorithm pack files into 96 disks similar to the number of
disks used by PackDisks. Our goal was to examine whether PackDisks still saves power even when it uses
the same number of disks as the random placement. The simulation was run for 720 simulation hours, and
all of the 115,832 requests are regenerated based on the time in the real lifeworkload data. For conveniently
observing power savings, we normalized the power cost of both algorithmsby taking the power cost as a
fraction of the power cost incurred by spinningN disks without any power-saving mechanism. As shown in
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Figure 5, both PackDisks and PackDisks 4 can save on the average about 85% of the power consumption.
This is much more than that of random placement, which varies from 30% to 90%, under different values of
idleness threshold. In fact, saving power even when a long idleness threshold, e.g. 2 hours, is given would
be an important feature, because it implies the low frequently spinning down and up, which can prevent
the mean-time-to-failure of disks from dramatically decreasing. Figure 6 shows the response time of both
algorithms. Although PackDisks 4 saves much more power, the requests under PackDisks 4 still exhibit
response times which are very similar or better to of that random replacement.Figure 6 also reveals that
idleness threshold larger than 0.5 hours is necessary for random placement to guarantee that the response
time will be within 10 seconds.

Figures 5 and 6 also plot the effects of random placement and PackDisk 4 when a 16GB LRU cache is
used to cache the frequently accessed files. Unfortunately, for such aworkload, the LRU cache does not
have much help, where the average hit ratio is only 5.6%. In addition, to observe the effect of PackDisk v,
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with different values ofv, we measured the response time and power saving ratio of PackDisk v when v is
changed from 1 to 8, and PackDisk 1 is equal to PackDisk. The idleness threshold is set at 0.5 hour. The
results reveal 4 is the ideal number of disks to be packed concurrently, because packing disks more than 4
in one time no more reduces response time but degrades the capability of power saving.

6. Conclusions and Future Work

In this paper we demonstrated the importance file allocation strategies for power conservation on disk
systems. We showed that careful packing of the files on disks results in a smaller number of spinning disks
leading to energy savings of up to a factor of 4 with modest increases in response time. The results of this
paper can also be used as a tool for obtaining reliable estimates on the size ofa disk farm needed to support
a given workload of requests while satisfying constraints on I/O response times. The simulation showed that
power saving decreases with arrival rates and increases with higher allowable constraints on disk loads.

In the future we plan to work on improvement of the file allocation algorithm as well as improved mod-
eling of the system in terms of additional workloads as well as more detailed modeling of the disk storage
system. More details about planned future work is given below. As a result of our extensive simulation
we discovered that further improvements to the response time can be made by restricting the types of files
that are allocated to the same disk. For example, we noted that large files that introduce long response time
delays, residing on the same disk with small and frequently accessed files lead to the formation of long
queues of requests for the latter files waiting for completion of servicing the large file. Additional work also
needs to be done to make dynamic decisions about migrating files between disksif it is discovered that the
frequency of retrieval of a file deviates significantly from the initial estimatesused as an input to the file
allocation algorithm. We also plan to investigate our techniques with more real life workloads that include
various mixes of read and write requests. In addition, we will include a cache as we believe that cache size
and replacement policies may also affect the trade-off between power consumption and response time.
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Algorithm 3 : Algorithm PackDisks

Input : A set ofn elementsF = {(s1, l1),(s1, l2), . . . ,(sn, ln)}, two heaps~Sand~L
Output : Partition ofF into subsetsD1,D2, . . . ,Dq

begin1

/* start loading first disk */
i← 1; Di ← /0 ;2

s-list[i] ← /0; l-list[i] ← /0 ;3

while ((S(Di)≥ L(Di) and~L 6= /0) or (S(Di) < L(Di)and~S 6= /0)) do4

if (S(Di)≥ L(Di)) then5

remove an element~l j from the heap~L;6

if S(Di)+sj > 1 then7

let the element,~sk, be the last element added to thes-list[i] ;8

/* we will prove that (S(Di)−L(Di)≤~sk) */

add~sk back to the list~S ;9

remove~sk from s-list[i] ;10

insert~l j at the end ofl-list[i] ;11

else12

remove an element~sj from the heap~S;13

if L(Di)+ l j > 1 then14

let the element,~lk, be the last element added to thel-list[i] ;15

/* we will prove that (L(Di)−S(Di)≤~lk) */

add~lk back to the heap~L ;16

remove~lk from l-list[i] ;17

insert~sj at the end ofs-list[i] ;18

if Di is completethen19

/* start new disk */
i← i +1; Di ← /0 ;20

s-list[i] ← /0; l-list[i] ← /0 ;21

if (~S 6= /0) then PackRemainingS ;22

if (~L 6= /0) then PackRemainingL ;23

end24
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Table 1. System Parameters
Parameter Value
n =Number of files n = 40000
R= Expected request
rate of files

Poisson arrival rate expected value,
Rper second (1∼ 12)

pi = Access fre-
quency of a file

Zipf-like distribution.
pi = c/rank1−θ

i , where c = 1 −
H1−θ

n ,
θ = log0.6/ log0.4, and
H1−θ

n = Σn
k=1

1
k1−θ

r i = Access rate of a
file

r i = pi ∗R

si = File size Inverse Zipf-like distribution
Minimum: 188MB, Maximum: 20
GB

l i = Disk load con-
tributed by a file

l i = r i ∗si

Number of disks 100
Simulated Time 4000 sec
Space requirement
for all files

12.86 TB

Table 2. The Characteristics of The Hard Disk
Description Value
Disk model Seagate ST3500630AS
Standard interface SATA
Rotational speed 7200 rpm
Avg. seek time 8.5 msecs
Avg. rotation time 4.16 msecs
Disk size 500GB
Disk load (Transfer rate) 72 MBytes/sec
Idle power 9.3 Watts
Standby power 0.8 Watts
Active power 13 Watts
Seek power 12.6 Watts
Spin up power 24 Watts
Spin down power 9.3 Watts
Spin up time 15 secs
Spin down time 10 secs
Idleness threshold 53.3 secs
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