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ABS''1TlUC'T 

This study addresses the assessrnent of accuracy 
of simulation predictions. A procedure is developed to 
validate a simple non-linear model defined to capture 
the hardening behavior of a foam material subjected to 
a short-duration transient impact. Validation means 
that the predictive accuracy of the model must be 
established, not just in the vicinity of a single testing 
condition, but for all settings or configurations of the 
system. The notion of validation domain is introduced 
to designate the design region where the model's 
predictive accuracy is appropriate for the application 
of interest. Techniques brought to bear to assess the 
model's predictive accuracy include test-analysis 
coi-relation, calibration, bootstrapping and sampling 
for uncertainty propagation and metamodeling. The 
model's predictive accuracy is established by training 
a metalnodel of prediction error. The prediction error 
is not assumed to be systcmatic. Instead, it depends on 
which configuration of the system is analyzed. 
Finally, the prediction error's confidence bounds are 
estimated by propagating the uncertainty associated 
with specific modeling assumptions. This publication 
has been approvcd for unlimited, public release on 
March '?", 2003. LA-IJR-03- 

1. INTRODUCTION 

The objcctive of this paper is to illustrate the 
assessment of accuracy of simulation predictions 
based on minimal tcsting. The paper demonstrates the 
validation of a siniple non-linear inodel tiefined to 
capture the hardening behavior O F  a foam material as it 
is subjected to a short-duration transient impact. 

It is asstuned that a numerical model is 
developed to simulate the response of a structural 
system and predict specific features of the response. 
When measurenients obtained from physical testing 
are available, the simulation results can be compared 
to the test results to attempt to quantify the level of 
fidelity provided by the model. If the agreement 
between measurements and predictions is not deemed 
appropriate, it is conmion practice in engineering 
sciences to tune the model to achieve small errors on 
somc given response features.' This is generally 
referred to as tuning, model updating or calibration. 

Elowever, these same simulations need to predict 
the system behavior at points in the design domain or 
operational space other than those for whch the 
siinulations have been tuned. For example, a model of 
wing flutter might be calibrated to reproduce test data 
available for several combinations of speeds and 
angles of attack but calibration does not necessarily 
provide confidence that the predictions will be 
accurate away from those combinations. There will 
certainly be some error when these models are 
extrapolated to different parameter values within the 
design or operational space. This paper aims to give a 
method for assessing the magnitude of these errors 
within the design space. 

The procedure is summarized as follows. First, 
test-analysis correlation is performed to assess the 
fidelity of predictions at those settings where impact 
tests have been performed. Second, the calibration 
variables of the non-linear model are optimized to 
improve the model's fidelity to test results. Third, 
statistical metamodels of prediction accuracy are 
trained to estimate the model's expected errors 
throughout the design domain. 
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The prediction error is not assumed to be 
systematic. It varies within the design space to reflect 
the fact that the model may be more appropriate in 
some regions than others. In this work variability and 
uncertainty are propagated using bootstrapping and 
Monte Carlo sampling. 

Finally the assumptions made during modeling 
are assigned prior probabilities based on the analyst’s 
confidence that they are correct. The prior knowledge 
is updated using the Bayes theorem of aggregation that 
accounts for fidelity to test data. Posterior probabilities 
result from the analysis. They are sampled to estimate 
the confidence bounds of predictive accuracy. The end 
result is an estimation of prediction errors anywhere in 
the design space, together with intervals that bound 
these errors at a given confidence level. The confidence 
bounds capture the prediction’s uncertainty introduced 
by the modeling assumptions. 

11. TESTING OF A FOAM MATERIAL 

The example used to illustrate the assessment of 
predictive accuracy within a design space is an impact 
test modeled by a Single Degree of Freedom (SDOF) 
system. The test hardware consists of a steel cylinder, 
sandwiching a foam pad with a steel plate, which is the 
carriage or impact table.2 Figure 1 illustrates the 
assembly of steel cylinder and foam pad mounted on 
the carriage. The steel cylinder and foam pad are held 
to the carriage through a bolted attachment. 

Figure 1. Drop test assembly. 

The system is assembled using quarter-inch or 
half-inch thick foam pads and dropped from a 13-inch 
or 1 55-inch height. Typical acceleration measurements 
measured on top of the carriage and steel cylinder are 
pictured in Figure 2 for a configuration of the system 
featuring the quarter-inch thick pad and 13-inch drop 
height. Each configuration is tested several times to 
estimate the effect of environmental variability and 

uncontrolled testing conditions on the response, as can 
be observed in Figure 2. 

Variabililv Obsewed In the Test Data (KS-08-17) 
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Figure 2. Measured acceleration signals. 

Physical testing provides data sets of input and 
output acceleration signals. Input refers to the 
acceleration applied to the carriage when it hits the 
ground. Output refers to the acceleration transmitted 
through the foam pad and measured on top of the steel 
cylinder. However physical testing does not provide an 
explanation of how the foam material behaves, which 
is the reason why a material model is developed. The 
model development is overviewed in Section 111. 

111. SDOF IMPACT MODEL 

Even though finite element models have been 
developed to study the the analysis reported 
here involves a simple SDOF model. The reason is 
because we are primarily interested in demonstrating 
the concepts of design domain, uncertainty assessment 
and predictive quality evaluation. This is best achieved 
with a model for which the modeling complexity does 
not confound the uncertainty assessment. 

The assembly of steel cylinder and foam pad is 
modeled as a spring-mass system with a moving base, 
where the mass corresponds to the steel cylinder, the 
springldamper corresponds to the combined stiffness of 
the foam and any additional stiffness of the system, and 
the moving base is the steel plate on which the foam 
pad and steel cylinder are mounted. The equation of 
motion is simply written as: 

lll%(t) + h ( t )  f F(t) = rnjibase(t) (1) 

where nz denotes the steel cylinder’s mass; k denotes 
the foam pad’s linear stiffness; and F represents a non- 
linear forcing function. The base acceleration applied 
to the right-hand side of equation (1) represents the 
input acceleration measured during one of the tests. 

2 
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Because of the high accelerations applied to the 
system, it is determined that the spring stiffness must 
be highly non-linear to show the same amplification 
effect observed froin impact ineas~irements. The linear 
stiffness contribution of equation (1) 1s augmented with 
a non-linear forcing function F defined as: 

F(t) =T k,l(x(t))P 

where x denotes the spring displacemcnt. Note that the 
non-linear stiffness coefficient k,, l  and exponent p are 
introduced by our modeling assumption. Other models 
and solution procedures-such as finite elements- 
introduce olher pararneterizatioiis. For obvious reasons 
the parameters defined by our modeling choices are 
collectively referred to as calibration variables. Thcir 
initial values are left to thc analyst's best judgment. 

l 2  t i l  

.2/.'..i-..-.I I L~l-._- 1. .--A 

Figure 3. Lxamples qf'non-linear stiJkess models. 

The non-linear model defined in equation (2) is a 
higher-order polynomial. Some of the other models 
investigated involve a linear part followed by an 
cxponential or a linear part followed by a second linear 
part of a difyerent slope. Figure 3 illustrates several 
non-linear stiffness models 
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Figure 4. Features ofthe acceleration response. 

Finally it is nieiltioned that, although the entire 
time response can be simulated with the SDOF model, 
only a few features of the response are considered in 
the subsequent analysis. They are illustrated in Figure 4 
and defined as the peak acceleration (denoted by 
PAC2) and the time it takes the shock wave to travel 
from the input sensor location to the output sensor 
location (or time of arrival, denoted by TOA2). 

It is deteiinined that the factors that most affect 
the simulation results are the input acceleration profile 
(that is, the acceleration signal inputted to the base of 
the SDOF model) and the stiffness model. The input 
acceleration profile is modeled by a hyperbolic secant 
function and it is demonstrated in Section IV that this 
curve fits the data very well. The unknown parameters 
(rn;lc;k,,,;p) of the equation of motion are calibrated to 
improve the fidelity of the niodel, as discussed below. 

IV. TEST-ANALYSIS CORRELATION 

The study starts by investigating the merits of 
various models in teims of matching the features PAC2 
(peak amplification) and TAC2 (time delay) extracted 
from test measurements. The linear model obtained by 
setting F=O in equation (1) does not reproduce the 
measured reatures well. The non-linear models capture 
these characteristics with various degrees of accuracy. 

The study discussed in ihe remainder is restricted 
to the SDOF model with polynomial non-linearity (2). 
This choice introduces four calibration variables p :  

(3) 

To improvc the model's predictive accuracy, the 
previous parameters are calibratcd with the objective of 
minimizing the difference between measurements and 
predictions. This difference is measured as a weighted 
L2 norm of the prediction error with a penalty term that 
avoids drifting too far away from the nominal model. 
In the context of Bayesian inference where variability 
of inputs p and outputs y is represented with Gaussian 
probability laws,4 the same cost function is defined as: 

where vector y7'" collects the mean of output features 
measured during a series of replicate impact tests and 
S,,, denotes the corresponding covariance matrix. The 
vector- y collects the output features PAC2 and TOA2: 

y = {PAC2;TOA2}1 ( 5 )  

For a given quadruplet (3) the output acceleration 
signal is simulated with thc equation of motion (1-2), 
the features (5) are extracted from the response, and the 

3 
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objective (4) is computed. The features yTe.” used as 
reference are extracted from the impact tests conducted 
with a quarter-inch thick foam pad and 13-inch drop 
height. A constrained, gradient-based optimization 
solier is wrapped around-these steps to calibrate 
inputs p that minimize the objective JO). 

Companronal sirnublion sndlorlrpA Bndmhpul acceleration for Test 30 
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Figure 5. Test-analysis correlation of a calibrated 
non-linear model (m;k;k,,/;p). 

Figure 5 illustrates the prediction of a non-linear 
model (m;k;k,l;p). The model not only reproduces with 
good accuracy the two features PAC2 and TOA2, but it 
also captures other characteristics of the response of 
the system. Although these models can be made to fit 
the test data almost perfectly, the question arises of 
how to extrapolate the model to other configurations of 
foam thickness and drop height values. 

V. THE DOMAIN OF VALIDATION 

The test-analysis correlation and model updating 
discussed previously implicitly assume that a particular 
configuration of the system is investigated. The results 
presented in Section IV are obtained when the drop 
height d and foam thickness h are kept constant (d=13” 
and h=%”). The non-linear model that results from 
calibration may be appropriate to predict the material 
behavior at these settings, but the question of its 
adequacy for other regimes remains open. 

The parameters k,,l and p that represent the foam 
material can be calibrated for each configuration tested. 
This typically results in different values of k,,/ and p for 
each drop height, which some may argue is not 
consistent because the foam material does not change 
between tests. On the other hand refining a numerical 
model to provide acceptable accuracy for a single 
configuration or regime is not an exercise of great 
value. The activity of modeling is justified whenever 
models can be applied to a wide variety of situations, 
especially those that cannot be tested for economic, 
safety or practical reasons. Instead of attempting to 

4 
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calibrate the model to “perfection,” it appears more 
useful to estimate the model’s predictive accuracy for 
all configurations of the system. Introducing the notion 
of validation domain helps with this assessment. 

The design domain (or validation domain) refers 
to the space of all potential settings, regimes or 
environments at which the system may be required to 
operate. Our opinion is that the predictive accuracy of 
the model must be assessed within the entire design 
domain, not just in the vicinity of a single physical 
experiment. Conversely the region of the design space 
where the accuracy is deemed appropriate for the 
application of interest defines the domain of validation. 

Foam Thickness 
Drop test 

0.50 

0.25 

Figure 6, Illustration of the domain of validation. 
(Red dots represent the configurations (h;d) tested.) 

In the example the domain of validation is two- 
dimensional and consists of the drop height d and foam 
thickness h, as shown in Figure 6 .  The design domain 
is bounded by the tested configurations: 1 3 ” l d  5155” 
and % ” S h  -<% ”. It is re-emphasized that the goal of the 
modeling effort is to provide a model capable of 
predicting the response of the system throughout the 
design space, not just for a single configuration @;LE). 

Predlctlan of the PAC Feature by the SDOF Model 
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Figure 7. Prediction of PAC2 features. 

c1 

! I  

t _..-- 
- 4  

LA-UR-03-??? i. Unclassified. 



Proceedings oftlze 44‘“ AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, 
and Materials Conference, Norfolk, Virginia, April 7-1 0, 2003. 

P 

2 1  

Predlctlan of tho TOA Feature by the SIJOF Model 
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continuously and “smoothly” as a function of the 
configuration (h;d). It is nevertheless recognized that 
assumptions are generally made to deal with-and, 
often, reduce-the Lmcertainty. For example assunung 
a polynomial error model lets us eliminate from the 
study the fact that the “true” behavior of the prediction 
error is unknown. To be thorough, such assumptions 
should be questioned. A probabilistic framework is 
discussed in Sections VlII and IX to handle the 
uncertainty reflected in modeling assumptions. 

Figure 8. Prediction of TOA.2, features. 

The predictions of PAC2 and 1‘0A2 features are 
shown in Figures 7-8 when the non-linear SDOF model 
is exercised at the four settings of drop hcight and foam 
thicltness. ‘The horizontal plane represents the domain 
of validation and the vertical axis shows the feature. 

The PAC2 and TOA2 features are coniputed for 
each configuration and replicate experiment. The thin 
foam pad (h:-%”) is impacted ten times and the thick 
foam pad (h=%”) is impacted five times. It can be 
observed fi-om Figures 7-8 that the PAC2 and TOA2 
features are mostly consistent with each other, except 
for the configuration (h  =: % ”; ti= 155 ’7. Note that these 
predictions are obtained using a single model: the one 
previously calibrated with respect to the configuration 
(h=% ”; d=13 ”) of the system. Next the accuracy of the 
iion-linear model is estimated throughout the design 
domain based on the predictions shown in Figures 7-8. 

Definition Unknowns 

I Full quadratic polynomial I 6 
Full cubic polynomial 10 

‘Table 1 defines the prediction error metamodels 
studied in this Section. It is a family of polynomials: 

e(h;d) = c l  - tc2h+c3d 
e(h;d) =cl-tc2h+c3d+c4hd 
e(h;d) = c + c2  h+ c3d+ c4 hd+ c5 h 2  + cgd 
e(h;d) = c l + c 2 h + c 3 d + c ~ h d + c 5 h  +c6d 2 2 (6) 

+ c7 dh + c8 hd2 + c9 h + c 1 od3 

‘The unknown coefficients CI to C I O  are best fitted 
to the errors e(h;d). One prediction error is defined for 
each configuration tested, that is, only four data points 
are available within the validation domain to train the 
polynoinials. To obtain a single prediction error e(h;d) 
that accounts for both features PAC2 and TOA2, the 
Mahalanobis mctric is computed: 

1 
e(h; p) = (yTest - y(h; p)) T S$ (yTest - y(h; p)) 

(7) 

where y is the feature vector defined in equation ( 5 ) ,  
yTe” denotes the inean features extracted from replicate 
impacts and S,,, is the corresponding covariance matrix. 

VI. DETElrWIMISlIC METAMODELS 
OF PREDICTIVE ACCURACY 

In this Section metamodels of predictive accuracy 
are discussed. The goal IS to estimate the model’s 
predtciion error within the previously defined domain 

Clearly the predictive accuracy of the modcl can 
only be estimatod at those settings (h;d) where physical 
experiments have been conducted. I n  the foam impact 
example only the four settings shown in Figure 6 are 
tested. Elsewhere an extrapolation of prediction error 

of validation. Type-I Model Typ%-lI Modal 

inust be perfoimcd. Polynomial nietainodels are chosen TVDO-2 Model TVOB-3 Model 

100 
to perfomi such extrapolation, mostly for simplicity. - Other metainodels could be deployed, such as neural 
networks5 or statistical Kriging-like 

2 ,  
c 100 

$ 0  It may be argued that there is no reason why the 
prediction error should vary according to a polynoimal 
model. Tlic assumption is reasonablc because, for this 
application, the prediction error is expected to vary Figure 9. Response .surfaces of prediction errors. 

5 
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Coefficient I Effect 

The unknown coefficients are computed for each 
error metamodel defined in Table 1 as the least-squares 
solution. A numerical solver based on the Singular 
Value Decomposition (SVD) is implemented to 
mitigate the adverse effects of ill conditioning. Non- 
linear optimization is also performed, although the 
results show that it does not significantly improve the 
goodness-of-fit. The four error metamodels hence 
obtained are pictured in Figure 9 as response surfaces 
over the entire domain of validation. 

Tables 2 and 3 provide the coefficients identified 
for the linear (type-I) and fully quadratic (type-2) error 
models. One observation is that the linear model does 
not fit the four data points well, as shown by the large 
RMS fitting error. The other three metamodels provide 
excellent fits. The cubic polynomial gives indications 
of over-fitting the data points. 

Value 
1 1 -66 1.7 
2 
3 

h 190.5 
d 81.5 

RMS Fitting Error 

The significance of the error metamodels pictured 
in Figure 9 is emphasized. They provide an estimation 
of the error committed when predicting the peak 
acceleration and time of arrival of the impact wave, 
without having to perform the calculation itself. Two 
issues that have not been addressed so far are 1) how to 
account for the experimental variability; and 2) how to 
select the appropriate functional form of a prediction 
error metarnodel. These issues are addressed next. 

171.6 

VII. STATISTICAL METAMODELS OF 
PREDICTIVE ACCURACY 

2 

4 
3 

Deterministic error metamodels were previously 
sought for simplicity. Deterministic models, however, 
cannot account for the variability encountered during 
physical experimentation, nor can they include other 
sources of uncertainty. 

Another limitation of deterministic polynomials is 
that they only provide deterministic error estimations. 
The Mahalanobis error metric employed here can be 

h 0.4 

h *d 15.0 
d -29.7 

related to a statistical test providing that assumptions 
are made about the probability distribution laws of the 
underlying random processes. The chi-square statistical 
test, for example, assumes Gaussian laws. Assuming 
that the joint probability distribution of the PAC2 and 
TOA2 features is Gaussian based on only five or ten 
replicates may be more than what is actually known. 

To avoid introducing unjustifiable assumptions, 
no assumption must be made regarding the probability 
laws of the measured or predicted features. In doing so 
we comply with the principle of “accounting for the 
uncertainv, all of it, but no more.” Error metamodels 
are developed using the same procedure as outlined in 
Section VI, with the exception of two differences. First 
the errors are defined in physical units as: 

5 

where yTesr and y represent one of the PAC2 or TOA2 
features. One error model is trained for each feature. 

The second difference is that the features used as 
the reference in yTes‘ are not averaged from the five or 
ten replicates as before. Instead one of the replicate 
tests is selected randomly for each setting (h;d). The 
four selected features-each drawn randomly from its 
own “pool” of replicate tests-are used to calculate the 
prediction errors (8). The prediction error polynomials 
defined in Table 1 are best fitted to the data. The whole 
procedure is repeated a thousand times, hence, defining 
a bootstrapping algorithm. It is emphasized that the 
random drawings do not constitute Monte Carlo runs 
because no probability law is sampled. Figure 10 
shows the training errors of the PAC2 (red squares) and 
TOA2 (blue circles) bilinear polynomials. 

hL 11.1 

Tralnlno Errorsfor Type-11 TOA Models 

6 d2 
RMS Fitting Error 

/ I I I 1 8 t I 1 1 1  
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7.1 O X ~ O - ’ ~  

Figure IO.  PAC2 and TOA2 training errors. 

The result of bootstrapping is a thousand error 
models for each feature and each polynomial type. The 
distributions of bilinear coefficients for the PAC2 and 
TOA2 prediction errors are shown in Figures 11 and 
12. As previously noted the linear model (type-I) does 

6 
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Effect 1 Coefficient 1 Deviation 
1 32.9 I 22.1 

not fit the (lata points well, while the other iiiodcls do. 
Figure I 1  shows that the coefficients of PAC2 errors 
are dislributcd according to a Gaussian-like law. On the 
othcr hand the coefficients of 'TOA2 cn-ors seem to be 
distributed according to hi-modal probability laws. 

Variation 
67.2% 

Dlstrrbutlon Of COefflClOntS Of PAC TypR-11 Models 
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Figure 1 I .  Lbtribution of coe$icients,for the bilinear 
polynomials of PAC72 prediction errors. 
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Figure 12. Dislribution of co@cients,for the bilinear 
polynonzials of TOA2 prediction errors. 

Tables 4 and 5 list the statistics (mean, standard 
deviation) of coefficients for the bilinear polynonials 
of PAC2 and l O A 2  prediction errors. In contract to thc 
metamodels developed in Section VI-that provide a 
deterministic prediction error at each setting (h;d)-the 
coefficients of the statistical metamodels are sampled 
according to their probability laws in Figures 1 1, 12 or 
Tables 4, 5 to generate a population of error response 
surfaces. Next statistics of the errors are computed. 

An illustration is provided in Figure 13. It shows 
the cxpected PAC2 crror (blue solid line) and the two- 
standard deviation confidence intervals (red dashed 
lines). 'The top sub-figure illustrates the error as a 
function of foam thicltness when the drop height is set 
to 75 inches. The bottom sub-figure illustrates the error 

as a frinction of drop height when a 0.39-inch thick pad 
is simulated. The confidence intervals capture the 
spread or PAC2 errors caused by environmental 
variability. Note how the prediction error's uncertainty 
amplifies with drop height, while it remains constant 
with as a function of the foam pad's thickness. This 
observation suggests that controlling the environmental 
variability inputted to the model is more critical if 
varying drop heights are simulated with the model. 

Table 4. Type-1 1 PAC2 prediction error metamodel. 
/---- 1 MeanPAC2 1 Standard 1 Percent 1 

I I? I 16.9 I 5.7 1 34.1% I 
-3.0 I 2.1 I 70.6% P- h 4:d I 0.7 I 0.6 I 83.9% 

I_ I I 

(Percent variation = 100 x standard deviation /mean.) 

Table 5. Type-1 1 TOA2 prediction error metamodel. 
I MeanTOA2 I Standard I Percent I 

15.3% 

Statistical Blllllear Metalnodel of PAC2 Errors 
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Figure 13. Statistics of PAC2 prediction errors. 

Error metamodels such as illustrated in Figure 13 
allow the analyst to estimate the error associated with a 
prediction at points (h;d) in the design space where 
testing has not been conducted. Conversely regions of 
the design space can be identified that yield less than a 
predefined error level. The bootstrapping procedure 
demonstrates how to propagate experimental variability 
from test measurements to inetamodels of predictive 
accuracy. The same approach can propagate other 
sources of variability and uncertainty. Monte Carlo 
simulations can just as well be implemented, if it is 
believed that sufficient evidence is available to define 
probability laws that can be sanipled. 
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VIII. PRIORS AND POSTERIORS OF 
PREDICTION ERROR MODELS 

The work has so far focused on the development 
of metamodels of predictive accuracy. In Section VI1 a 
general procedure is suggested to develop error models 
that account for sources of variability and uncertainty. 
Sections VI11 and IX illustrate how to combine several 
metamodels, which addresses the issue of model form 
uncertainty and selection. 

As discussed previously the correct form of the 
error metamodel is unknown. We have assumed a 
family of polynomials but other choices, such as neural 
networks, are equally likely. So far this uncertainty has 
not been accounted for in the analysis. For example it 
is assumed in Section VI1 that the correct form of the 
error model is bilinear. The advantage of formulating 
such assumption is that it removes uncertainty about 
the model form from the analysis. Accounting for the 
uncertainty is nevertheless critical when the objective 
is to assess the total prediction error of a simulation. 
The same remark applies to the functional form (2) of 
the non-linear forcing function and, in general, any 
modeling assumption. For simplicity the only source of 
modeling uncertainty considered in the remainder is the 
polynomial form of the error metamodel. The approach 
discussed below generalizes to other uncertainties. 

Instead of postulating an assumption to eliminate 
this modeling uncertainty, we seek to estimate its effect 
on the predictive accuracy. Because assumptions such 
as “the metamodel is linear” or “it is quadratic” lead to 
different error metamodels, our approach is to assign 
probabilities to the various assumptions and propagate 
the uncertainty by means of a Monte Carlo simulation. 

The procedure starts by seeking a mechanism to 
assign probabilities to the modeling assumptions or, 
equivalently, combine the prediction error metamodels. 
Here metamodels are combined using the framework 
provided by the Bayes Theorem of conditional 
pr~babilities.~ In Bayesian analysis the probability of a 
modely=M(p) is updated and conditioned on the test 
data y by accounting for the ability of this model to 
reproduce the available data: 

Priors Likelihood Posteriors 
30.0% 4 . 5 9 ~ 1 0 - ~  1.51% 
30.0% 1.28~10” 42.21% 

where P r h )  represents the prior knowledge, that is, 
what the analyst knows before the model is put to the 
test of comparing its predictions to test data. Quantity 
Pr(plyTes‘) denotes the posterior probability sought to 
assign a probability to each modeling assumption. The 
likelihood function Pr(yT“‘lp) can be defined a number 

2 
3 

of ways. For all practical purposes it designates the 
agreement between predictions y of the model and test 
data yrt‘s‘, which is why it is here calculated as: 

30.0% 1 .28~10‘~  I 42.21% 
10.0% 1 .28~10‘~  I 14.07% 

where S is a “misfit” function’ simply defined in the 
example as the Mahalanobis distance (7). Note that the 
likelihood function is not a probability. It does not need 
to satisfy the Kolmogorov axioms of probability, which 
is why the scaling factor k included in equation (1 0) is 
later omitted (k=l) .  

Table 6 lists the prior probabilities, likelihood 
values, and posterior probabilities of the four error 
polynomials and Figure 14 presents the results of the 
Bayesian updating. Originally the linear, bilinear, and 
quadratic models are assigned equal probabilities of 
30%. The cubic model is assigned a 10% probability 
because the investigation shows that it tends to over-fit 
the data. The likelihood values are computed by 
combining equations (7) and (10) where S=e(h;d). 
Priors and likelihood values are multiplied together and 
normalized according to equation (9) to calculate the 
posteriors listed in Table 6. 

Table 6. Prior and posterior probabilities. 

Prlor and Posterlor Probabllltles ot error Models 
50 

Figure 14. Prior and posterior probabilities. 

The results confirm that the bilinear and quadratic 
polynomial forms are most appropriate because their 
posterior probabilities increase. The linear polynomial 
becomes unlikely due to its lack of fit to the data, while 
the cubic polynomial’s posterior increases slightly. In 
conclusion a probability law is assigned to represent 
the uncertainty associated with the functional form of 
the prediction accuracy metamodels. This example 
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illustrates how an episteniic lack of knowledge can be 
replaced by a probability distribution instead of being 
somewhat arbitrarily eliininated from the analysis by 
formulating an assumption. 

IX. BOUNDS OF IMODELING ERRORS 

The concepts of deteiininistic and statistical error 
niodels have previously been illustrated. The statistical 
metamodels developed in Section VI1 accounted for the 
experimental variability but their functional form was 
not questioned. Uncertainty regarding their form is 
now taken into account. 

The cnd result is an assessrrient of predictive 
accuracy throughout the domain of validation, together 
with confidence intervals---or the “error of the error”- 
that reflect the experimcnlal variabi lily and modeling 
uncertainty. ‘This is here rcferred to as bounding the 
modeling error. We seek to obtain an estimation or 
prediction error e(7z;d) at any point (!%;LE) of the design 
domain, and also intervals [eMi77;ehlc,x/ that bound these 
errors at a given confidcnce levcl C,(. The statistical 
interpretation is that, if a hundred simulations are 
performed with all sources of unccrtainfy represented, 
then the prediction errors would fall CE times out of a 
hundred within the interval [eMlll;eMcrJ. 

Because the unknown polynomial model form is 
represented as a probability law in Section VIII, 
studying the effect of this uncertainty on the prediction 
accuracy simply becomes ii sampling issue. Basically 
the posterior probabilities listed in Table 6 are sampled, 
that is, a polynomial type (linear, bilinear, quadratic or 
cubic) is randomly selected according to the posteriors. 
Once the error metamodel selected its coefficients are 
sampled to account for the effect of environmental 
variability. Figures 15 and 16 illustrate foity randomly 
selected error models for predicting PAC2 and TOA2. 

lo ,  

Ob 

I 
6 7 0 9 10 11 12 I s  

Foam Thickness (x  IO“ mete,) 

1 - -  I 

0.5 1 1.5 2 2.5 3 3.5 4 
Drop Height (meter) 

Figure 15. 40 realizations o f  PAC2 error nzetamodels. 
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40 Samples of TOA Prediction Error Models 

n 7 B B I O  11 12 13 

Foam Thickness (x I O 3  meter) 

1 

0 5  1 16 2 2.5 3 3 5  4 
Drop Helghl Imetor) 

Figure 16. 40 realizations of TOA2 error metunzodels. 

In Figures 15 and 16 the error models arc shown 
as one-dimensional curves for clarity, even though the 
information is available in the plane (h;d). Some of the 
inetamodels are bilincar polynomials, while others are 
quadratic or cubic. The polynomials of same type do 
not necessarily possess thc same coefficients because 
these are sampled to reflect the test variability. 

In essence this approach defines a hierarchical 
Monte Carlo simulation. The outer loop samples the 
model form and thc inner loop samples the polynomial 
coefficients. A hundred outer runs and a thousand inner 
runs are performed, €or a total of 100,000 simulations. 
The algorithm is not demanding because evaluating the 
enor metaniodels can be perfoimed in a fraction of a 
second on a regular desktop computer. 

Figure 17. Final PAC2 prediction errors and 
uncertainty bounds of uncertainty. 

Figure 17 pictures the final metamodel of PAC2 
prediction error as well as its uncertainty bounds. The 
mean error (blue solid linc) and two-standard deviation 
intervals (red dashed lines) are shown. Figure 18 shows 
the same information for the TOA2 feature. Slices of 
constant foam thickness or drop height are shown for 
clarity. A “necking” pattern can be observed in the 
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Figures. It expresses that the assessment of prediction 
error is more confident in the vicinity of settings (h;d) 
where physical tests have been performed. Away from 
the tested configurations the prediction error does not 
necessarily grow but the uncertainty of the assessment 
does. Should such uncertainty become too important to 
prevent any meaningful decision-making, action such 
as additional testing or hrther model revision would be 
recommended to attempt to keep it under control. 

-40 

6 7 0 S 10 11 12 13 
Foam Thlckners (x IO.’ meter) 

TOA Emom far Foam lhlcknerr i 40 48 x ioJ m 

0 6  1 1.6 2 2 6  3 36 4 

Drop Helght(meter) 

Figure 18. Final PAC2 prediction error metamodels 
and their bounds of uncertainty. 

In the example the variability of impact tests and 
the uncertainty about the functional form of the error 
metamodel are considered. Nevertheless other sources 
of uncertainty-such as the functional form of the non- 
linear force, its parameters, the boundary and initial 
conditions-should be propagated in a similar manner 
if they are included in the analysis. Although an 
exhaustive quantification of uncertainty is not provided 
in this study, the main elements are presented. One can 
easily understand how to apply the method to a more 
complete assessment of predictive accuracy. 

X. CONCLUSION 

In the context of model validation the ultimate 
goal of uncertainty quantification is to construct an 
uncertainty model for every component of the 
simulation, which taken all together summarize how 
well the predictions agree with all available 
experimental results. It is emphasized that uncertainty 
models must not necessarily be statistical in nature. 
Other frameworks, such as the non-probabilistic theory 
of information gap, might be more appropriate in cases 
of extreme uncertainty or scarce data.’ 

Being able to assess the predictive error within 
the design domain is a necessary step to answer other 
important questions in model validation. The first one 
of them is to decide how many physical experiments 
are required to provide a reliable estimate of the 

prediction error. Procedures must be developed to 
decide how many experiments are required and where 
in the design domain to perform the physical testing. 

Another important question is to assess how 
“good” across the design domain must the model be for 
a particular application. The estimation of predictive 
accuracy also makes it possible to quantitatively rank 
competitive models against each other. These questions 
will be the thrust of future research. 
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