Evaluation of Candidate In-Pile Thermal Conductivity Techniques

PDF Version Also Available for Download.

Description

Thermophysical properties of materials must be known for proper design, test, and application of new fuels and structural properties in nuclear reactors. In the case of nuclear fuels during irradiation, the physical structure and chemical composition change as a function of time and position within the rod. Typically, thermal conductivity changes, as well as other thermophysical properties being evaluated during irradiation in a materials and test reactor, are measured out-of-pile in “hot-cells.” Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provide understanding of the sample's ... continued below

Creation Information

Fox, B.; Ban, H.; Daw, J.; Condie, K.; Knudson, D. & Rempe, J. May 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Thermophysical properties of materials must be known for proper design, test, and application of new fuels and structural properties in nuclear reactors. In the case of nuclear fuels during irradiation, the physical structure and chemical composition change as a function of time and position within the rod. Typically, thermal conductivity changes, as well as other thermophysical properties being evaluated during irradiation in a materials and test reactor, are measured out-of-pile in “hot-cells.” Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provide understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for the development of next generation reactors and advanced fuels for existing nuclear plants. Having the capacity to effectively and quickly characterize fuels and material properties during irradiation has the potential to improve the fidelity of nuclear fuel data and reduce irradiation testing costs.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-09-16039
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/961919 | External Link
  • Office of Scientific & Technical Information Report Number: 961919
  • Archival Resource Key: ark:/67531/metadc926348

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 28, 2016, 1:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fox, B.; Ban, H.; Daw, J.; Condie, K.; Knudson, D. & Rempe, J. Evaluation of Candidate In-Pile Thermal Conductivity Techniques, report, May 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc926348/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.