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ABSTRACT

Coupling neutronics to thermomechanics is important for the analysis of fast burst reactors, because
the criticality study of fast burst reactors depends on the thermomechanical behavior of fuel
materials. For instance, the shut down mechanism or the transition between super and sub-critical
states are driven by the fuel material expansion or contraction. The material expansion or
contraction is due to the temperature gradient which results from fission power. In this paper, we
introduce a numerical model for coupling of neutron diffusion and thermomechanics in fast burst
reactors. We perform non-dimensional analysis of the coupled system which provides insight into
the behavior of the transient. We studied material behavior corresponding to different levels of
reactivity insertion.
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1. INTRODUCTION

There has been a long standing interest in developing numerical models for the analysis of fast
burst critical experiments. For example, in an early model [1] the uncoupled thermomechanics of
fissile materials was studied by inserting prescribed temperature fields into the elastic equations.
More recently, a model was developed [2] which coupled thermomechanics of a fast burst reactor
with point reactor kinetics. Here, we present a model which fully couples spatially-dependent
neutron diffusion and thermomechanics in order to simulate transient behavior of a fast burst
criticality excursion.
The problem involves solving a set of non-linear differential equations which approximate
neutron diffusion, temperature change, and material behavior. With this equation set it is possible
to model the transition from a supercritical to subcritical state and corresponding material
response, e.g, possible mechanical vibration.
We present results from a one-group, spherically symmetric diffusion model accounting for
prompt neutrons only. We don’t include delayed neutrons, since the time scales involved are too



Kadioglu et al

fast in order for delayed neutrons to contribute to the system. We also ignore thermal conduction
or thermal surface radiation cooling.
The present paper is organized as follows. In Section 2, we describe the model equations and their
dimensionless forms. In Section 3, we describe our numerical procedure to the coupled system.
In Section 4, we present our computational results and analysis. Section 5 contains our
concluding remarks.

2. GOVERNING EQUATIONS

Our model equations are formulated in a spherically symmetric coordinates [1–3]. In this case,
the neutron diffusion is governed by
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The material displacement is modeled by the following elastic wave equation;
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The material density is computed by considering the mass/particle conservation in a spherical
domain;

ρ = ρ0[
r

r + u
]3. (4)

Finally, we give a formula for the radial stress component[1]

τr =
ε

(1 + υ)(1 − 2υ)
[2υ

u

r
+ (1 − υ)

∂u

∂r
− (1 + υ)βT ]. (5)

Formula (5) will serve as a surface boundary condition when solving Eq. (3).
We remark that there are limitations for this coupling model. For instance, the diffusion model is
not the most accurate model to evaluate neutron flux (e.g, one can implement more accurate
transport theory for this purpose). Nevertheless, this model is sufficient enough to couple with the
thermomechanics to obtain preliminary material behaviors which are observed experimentally.
Secondly, the linear mechanics model (elastic wave model) is fine for small material
displacements. However, one has to use a non-linear mechanics model (e.g, time dependent
hydrodynamics equations) in order to solve large material displacements.
The unknowns and constant parameters that appear in these equations are defined as
φ : Neutron flux
T : Temperature
u : Material displacement
ρ : Material density
r : Spatial variable
t : Time variable
v : Average neutron speed
N : Number atom density
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ν : Number of neutron produced per fission
σtr : Microscopic transport cross section
σa : Microscopic absorption cross section
σf : Microscopic fission cross section
ω : Amount of average energy released per fission
cp : Specific heat
β : Linear thermal expansion coefficient
c = [ (1−υ)ε

(1+υ)(1−2υ)ρ
]1/2 : Wave speed

υ : Poisson’s ratio
ε : Young’s modulus
We note that the material density can be written as the product of the number atom density and
the atomic mass, i.e, ρ = NAm.

2.1. Dimensionless Form

In this section, we introduce several non-dimensional parameters and write down the
dimensionless form of Eqs. (1), (2), and (3). We consider the following dimensionless group;

r̃ =
r

R0

, t̃ =
t
l

k−1

, φ̃ =
φ

φ0

, T̃ =
T

T0

,

ũ =
u

R0

, ρ̃ =
ρ

Am
R0σtr

(6)

where R0 is the initial radius of the sphere, φ0 is the maximum initial neutron flux, T0 is the
maximum initial temperature, l = [vΣa(1 + L2Bg2)]−1 is the mean lifetime of neutron in the
reactor, Σa = Nσa is the macroscopic absorption cross section, L2 = D

Σa
is the diffusion area,

D = 1
3Σtr

is the diffusion coefficient, Σtr = Nσtr is the macroscopic transport cross section,
Bg2 = ( π

R0
)2 is the geometric buckling, Σf = Nσf is the macroscopic fission cross section, and

k =
νΣf /Σa

1+L2Bg2 is the multiplication factor. We note that k represents the initial multiplication factor
which corresponds to a supercritical reactor state. In other words, the system is always set to a
supercritical state so that we avoid singularities in the non-dimensional equations due to division
by the (k − 1) term. With these, we have the following non-dimensional system of equations
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where P = vl
R0(k−1)

and C =
lωσf φ0

T0(k−1)cpAm
are dimensionless parameters, and c̃ = c

R0(k−1)
l

is the
dimensionless wave speed.
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When we implement the surface boundary condition for the displacement, we set τr = 0, thus the
non-dimensionalization of Eq. (5) becomes

2υũ + (1 − υ)
∂ũ

∂r̃
= (1 + υ)T0βT̃ . (10)

More details about the non-dimensionalization procedure are given in [4].

3. NUMERICAL METHOD

Our numerical algorithm consists of an explicit and an implicit block. The reason why we
develop this kind of approach is that the time steps are impractically small(e.g, due to the stiffness
of the problem) if one wants to solve Eq. (1) explicitly. Therefore, we make use of an implicit
strategy to solve Eqs. (1) and (2). On the other hand, it is well known that wave equations are
solved by following the characteristic wave speed due to numerical instability and accuracy
issues. This requires explicitly obeying the so called Courant stability conditions [5]. Therefore,
an explicit scheme is better choice for solving Eq. (3).
The numerical algorithm is executed as follows. First, Eq. (3) is advanced with a second order
explicit discretization in time to obtain a new displacement (the density field is immediately
updated by Eq. (4)). Then the updated density is inserted into the implicit loop to advance Eqs.
(1) and (2) which is also second order accurate in time. All of the spatial terms are discretized by
second order differencing schemes. Therefore, the resulting overall simulation will be shown to
be second order accurate in space and time.
We note that our algorithm implementation looks like an operator split scheme (e.g,
thermomechanics is operator split from the neutronics). Thus, one may think that it is first order
in time. However, the time discretization of the wave equation is centered around time level n so
that overall scheme produces second order time values. We note that the algorithm can be
implemented in another way. In other words, the explicit block can be called within the implicit
loop as a function evaluation. We have considered both implementations and both are second
order accurate in time, but the former is computationally more expensive.
Here, we attribute our second order results to our specific model (linear mechanics model).
However, if one wants to solve hydrodynamics model (non-linear mechanics model) with our
explicit-implicit strategy, the results will be first order in time due to splitting errors. In this case,
one has to implement a truly non-linearly consistent algorithm. This issue is currently being
investigated.
Below, we briefly describe our explicit and implicit blocks.

3.1. Explicit Block

The explicit block for solving Eq. (9) together with Eq. (10) is based on a second order centered
in time and space scheme[5],
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(11)

Here the index i represents ith cell, and n denotes the current time level.
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3.2. Implicit Block

Our implicit block solves Eqs. (7) and (8) based on the so called theta-scheme. For instance

U
n+1
i = U

n
i + Δt̃[θFn

i + (1 − θ)Fn+1
i ], (12)

where U = (φ̃, T̃ ) , F = (Fφ̃, FT̃ ),
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We note that θ = 0, 0.5, and 1 corresponds to the implicit Euler, Crank-Nicolson, and explicit
Euler schemes respectively [6]. We use θ = 0.5 for all of our test calculations so that the entire
implicit block is second order in time and space.
The non-linear solver within the implicit block is based on the Jacobian-Free Newton Krylov
method [7].
Below, we give a short summary of the Jacobian-Free Newton Krylov method.
The Newton method solves F(U) = 0 (e.g, assume Eq. (12) is written in this form) iteratively
over a sequence of linear system defined by

J(Uk)δUk = −F(Uk),

U
k+1 = U

k + δUk, k = 0, 1, · · · (14)

where J(Uk) = F
′(Uk) is the Jacobian matrix and δUk is the update vector. The Newton

iteration is terminated based on a required drop in the norm of the nonlinear residual, i.e,

‖F(Uk)‖2 < tolres‖F(U0)‖2 (15)

where tolres is a given tolerance.
The linear system (14) is solved by the Arnoldi based Generalized Minimal RESidual method
(GMRES) which belongs to the general class of the Krylov subspace methods[8]. In GMRES, an
initial linear residual, r0, is defined for a given initial guess δU0,

r0 = −F(U) − JδU0. (16)

Here we dropped the index k convention since the Krylov (GMRES) iteration is performed at a
fixed k. Let j be the Krylov iteration index. The jth Krylov iteration minimizes ‖JδUj + F(U)‖2

within a subspace of small dimension, relative to n (the number of unknowns), in a least-squares
sense. δUj is drawn from the subspace spanned by the Krylov vectors,
{r0,Jr0,J

2
r0, · · · ,Jj−1

r0} , and can be written as

δUj = δU0 +

j−1∑

i=0

βi(J)i
r0, (17)
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Figure 1. Sketch of a Spherical fission model.

where the scalar βi minimizes the residual. One particularly attractive features of the GMRES is
that it does not require forming the Jacobian matrix. Instead, only matrix-vector multiplications,
Jv, are needed, where v ∈ {r0,Jr0,J

2
r0, · · · } . This leads to the so-called Jacobian-Free

implementations in which the action of the Jacobian matrix can be approximated by

Jv =
F(U + εv) − F(U)

ε
, (18)

where ε = 1
n‖v‖2

∑n
i=1 b|ui| + b, n is the dimension of the linear system and b is a constant whose

magnitude is within a few orders of magnitude of the square root of machine roundoff (typically
10−6 for 64-bit double precision).

4. RESULTS

In this section, we present our numerical results. The computational example simulates transient
behavior of a spherical fast burst reactor. For instance a spherically symmetric fission material is
considered (refer to Figure 1).
Given the material, the first step is to evaluate the critical radius. At t = 0, we assume constant
uniform material density so that we linearize Eq. (7). Then applying the method of separation of
variables, we obtain an analytical solution. Considering the first spatial mode of this solution and
specified cross sections, we obtain critical radius. For instance, the initial critical material radius,
R0 = 0.0766m for given σa = 2.11 × 10−28m2, σf = 1.85 × 10−28m2, σtr = 6.80 × 10−28m2,
ν = 2.98, and v = 105m/sec (these cross sections belong to 239Pu [9]). We note that slightly
changing parameters (e.g, increasing the initial radius or increasing ν) is equivalent to inserting
reactivity and results supercritical reactor state.
Initially, the reactor is set to a supercritical state. This leads to power rise consequently
temperature rise. Then the rising temperature causes the material to expand leading to a density
drop. Decreasing density results in an increase in neutron leakage therefore turning the reactor
into subcritical state. Further in time, reactor shuts itself down because the material stays in
expanded state due to lack of heat extraction mechanism in our model.
The initial and boundary conditions for the field variables are set as follows; The initial neutron
flux is set to, φ̃(r̃, 0) = Cφ

sinπr̃
r̃

where Cφ is determined by the power formula, i.e,
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Figure 2. Power pulses (Watt) from the coupled model.

P = ERΣf

∫
φ̃(r̃, 0)dV with ER being the recoverable energy per fission (typically,

ER = 3.2 × 10−11J). The boundary conditions for φ are the symmetry condition at r̃ = 0, i.e,
∇φ̃ = 0 and the vacuum boundary condition near r̃ = 1, i.e, φ̃ = 0 at some small distance near
the material surface (in many practical applications this distance is negligibly small). The
non-dimensional initial temperature is 1. For the temperature, we apply symmetry boundary
condition at the center, and a second order extrapolation boundary condition at the material
surface. The initial displacement is set to zero. At the center of the sphere, we set symmetric
displacement , and at the material surface we use Eq. (10 ). The initial density is set as
ρ0 = 19.7 × 103kg/m3. The boundary conditions for the density is set via Eq. (4). The other
material parameters are set as ε = 1.0 × 1011Pa, υ = 0.15, β = 53 × 10−6K−1, and
cp = 13J/kgK.
In this paper, we tested three different reactivities/power pulses and observed the material
responses accordingly. In all three cases, R0 = 0.078m so that we have supercritical reactor state.
To achieve different levels of reactivity, we adjusted neutron production term (i.e, ν = 2.98, 2.95,
and 2.93 for a fast, medium, and slow pulse). The initial power is set to one.
We note that the time scales for neutronics and the elastic wave are τneutron = l

k−1
and

τ elastic = R
c

so that 1
c̃

= τelastic

τneutron in Eq. (9).
Figure 2 shows a fast, medium, and slow power pulse (we used M = 50 mesh points for these
computations). The corresponding material responses are shown in Figure 3. The time scales
behave as τneutron < τ elastic for the fast pulse and τ elastic < τneutron for the slow pulse (refer to
Figure 4). We see significant material vibrations for the fast pulse, this is because the material
doesn’t have enough time to respond to the fast power rise. On the other hand, we don’t see any
vibration for the slow power test since the material can respond to the slow power rise with a
non-vibrating expansion.
These behaviors can be derived from the mathematical equations. Indeed, if we rewrite Eq. (9) in
terms of the two time scales, we have
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Figure 3. Surface displacements (Meter) corresponding to the power pulses in Figure 2.

(
τ elastic
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)2∂2ũ
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∂2r̃
+

2
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∂ũ
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−
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r̃2
ũ] +

1 + υ

1 − υ
βT0

∂T̃

∂r̃
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For the fast pulse, 1 << ( τelastic

τneutron )2 meaning Eq. (19) supports a wave structure. On the other
hand, ( τelastic

τneutron )2 << 1 for the slow pulse in which case the time term in Eq. (19) is insignificant.
At this point Eq. (19) doesn’t support a wave structure anymore leading to a flat displacement
profile. Thus, by non-dimensional analysis of the coupled system we can observe the limits and
shed light on conditions required to observe vibration. The medium strength power pulse results
in moderate material vibrations.
The core of this study was our non-dimensional mathematical analysis to explain certain material
behaviors which are experimentally observed. However, our solutions are obtained from a
numerical model, therefore it requires some verifications, especially, concerning the time
discretization.
To verify the time accuracy of our numerical procedure, we carried out a numerical convergence
analysis. To measure the time convergence, we run the code with a fine mesh (e.g, M = 400
points) and different time step refinements to a final time (e.g, tfinal = 1.5 × 10−4). Then we
measure the L2 norm of errors between two consecutive time step runs and observe the rate of
decrease in these errors. For instance, Figure 5 shows the second order time convergence of the
scheme for Neutron flux and displacement. We have provided further numerical convergence
analysis (e.g, regarding the spatial accuracy) and a partial analytical verification in [4].
We would like to make some remarks about the solver performance. The implicit solver
converges to a given tolerance with on average three Krylov iterations and one Newton step in
smooth regions. On the other hand, in high gradient regions (e.g, where there is a steep power
rise), the convergence takes on average 35 Krylov iterations and two Newton steps. We note that
the code performance can be improved by preconditioning the Krylov block.
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Figure 4. Elastic and neutron time scales for the fast and slow power pulses (e.g, refer to
Figure 2).

5. CONCLUSIONS

We have presented a preliminary study for the coupling of neutron diffusion and thermomechanics
of fast burst reactors. We illustrated the mechanical response of the material to different power
(reactivity) settings. We showed that if there is a fast power rise in the system, then the material
expands to a certain level and starts vibrating. On the other hand, if the power slowly increases,
then the material expands with significantly less or non-vibrating fashion. Analysis of the
non-dimensional system illuminates the distinct physical regimes which are observed.
Our future work involves making use of the transport theory for solving neutronics and coupling
it with an hydrodynamics model to solve the material properties.
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