Low-energy neutrino factory design

PDF Version Also Available for Download.

Description

The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations ... continued below

Physical Description

14 pages

Creation Information

Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; Lab, /Jefferson; Bross, A.; Geer, S. et al. July 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

Physical Description

14 pages

Source

  • Journal Name: Phys.Rev.ST Accel.Beams 12:070101,2009; Journal Volume: 12; Journal Issue: 7

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-09-001-APC
  • Grant Number: AC02-07CH11359
  • DOI: 10.1103/PhysRevSTAB.12.070101 | External Link
  • Office of Scientific & Technical Information Report Number: 962754
  • Archival Resource Key: ark:/67531/metadc926320

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 6, 2016, 12:39 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; Lab, /Jefferson; Bross, A.; Geer, S. et al. Low-energy neutrino factory design, article, July 1, 2009; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc926320/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.