Optical studies of 2DEGs in ZnSe quantum wells in high magnetic fields.

PDF Version Also Available for Download.

Description

Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.

Physical Description

11 p.

Creation Information

Ossau, Wolfgang J.; Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.) & Waag, A. January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.

Physical Description

11 p.

Source

  • Submitted to: International Conference of the Physics of Semiconductors, Edinburgh, Scotland, July 29-Aug. 3, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-4915
  • Office of Scientific & Technical Information Report Number: 976252
  • Archival Resource Key: ark:/67531/metadc926265

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • June 10, 2019, 4:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 22

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ossau, Wolfgang J.; Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.) & Waag, A. Optical studies of 2DEGs in ZnSe quantum wells in high magnetic fields., article, January 1, 2002; United States. (https://digital.library.unt.edu/ark:/67531/metadc926265/: accessed April 23, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen