A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting

PDF Version Also Available for Download.

Description

We present a new supernode-based incomplete LU factorization method to construct a preconditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve the robustness and performance of the traditional ILUTP method. These include the new dropping strategies that accommodate the use of supernodal structures in the factored matrix. We present numerical experiments to demonstrate that our new method is competitive with the other ILU approaches and is well suited for today's high performance architectures.

Physical Description

20

Creation Information

Li, Xiaoye Sherry & Shao, Meiyue June 25, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a new supernode-based incomplete LU factorization method to construct a preconditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve the robustness and performance of the traditional ILUTP method. These include the new dropping strategies that accommodate the use of supernodal structures in the factored matrix. We present numerical experiments to demonstrate that our new method is competitive with the other ILU approaches and is well suited for today's high performance architectures.

Physical Description

20

Source

  • Journal Name: ACM Transactions on Mathematical Software

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-2178E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 964408
  • Archival Resource Key: ark:/67531/metadc926116

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 18, 2016, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Li, Xiaoye Sherry & Shao, Meiyue. A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting, article, June 25, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc926116/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.