Simulations of The Dalles Dam Proposed Full Length Spillwall

PDF Version Also Available for Download.

Description

This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of ... continued below

Physical Description

PDFN

Creation Information

Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C. & Serkowski, John A. February 25, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Pacific Northwest National Laboratory (U.S.)
    Publisher Info: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), Environmental Molecular Sciences Laboratory (EMSL)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of the spillwall will improve egress conditions for downstream juvenile salmonids by moving them more rapidly into the thalweg of the river hence reducing their exposure to predators. A numerical model was created, validated, and applied the The Dalles Dam tailrace. The models were designed to assess impacts to flow, tailrace egress, navigation, and adult salmon passage of a proposed spill wall extension. The more extensive model validation undertaken in this study greatly improved our confidence in the numerical model to represent the flow conditions in The Dalles tailrace. This study used these validated CFD models to simulate the potential impacts of a spillwall extension for The Dalles Dam tailrace for two locations. We determined the following: (1)The construction of an extended wall (between Bays 6/7) will not adversely impact entering or exiting the navigation lock. Impact should be less if a wall were constructed between Bays 8/9. (2)The construction of a wall between Bays 6/7 will increase the water surface elevation between the wall and the Washington shore. Although the increased water surface elevation would be beneficial to adult upstream migrants in that it decreases velocities on the approach to the adult ladder, the increased flow depth would enhance dissolved gas production, impacting potential operations of the project because of water quality. A wall between Bays 8/9 should have a lesser impact as the confined spill would be across more bays and the relative flow constriction less. (3) The 405 kcfs case was used for the rapid assessment of flow conditions and hydraulic mechanisms that might be responsible for the unexpected erosion at the end of the shelf downstream of Bay 7.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-17322
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/969182 | External Link
  • Office of Scientific & Technical Information Report Number: 969182
  • Archival Resource Key: ark:/67531/metadc926089

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 25, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 18, 2016, 3:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C. & Serkowski, John A. Simulations of The Dalles Dam Proposed Full Length Spillwall, report, February 25, 2008; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc926089/: accessed June 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.