Implicit turbulence modeling for high reynolds number flows.

PDF Version Also Available for Download.

Description

We continue our investigation of the implicit turbulence modeling property of the nonoscillatory finite volume scheme MPDATA. We start by comparing MPDATA simulations of decaying turbulence in a triply periodic cube with analogous pseudospectral studies. In the regime of direct numerical simulation, MPDATA is shown to agree closely with the pseudospectral model. As viscosity is reduced, the two model results diverge. We study the MPDATA results in the inviscid limit, using a combination of mathematical analysis and computational experiment. We validate the inviscid MPDATA results as representing the turbulent flow in the limit of very high Reynolds number.

Physical Description

11 p.

Creation Information

Margolin, L. G.; Smolarkiewicz, P. K. (Piotr K.) & Wyszogrodzki, A. A. (Andrzej A.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We continue our investigation of the implicit turbulence modeling property of the nonoscillatory finite volume scheme MPDATA. We start by comparing MPDATA simulations of decaying turbulence in a triply periodic cube with analogous pseudospectral studies. In the regime of direct numerical simulation, MPDATA is shown to agree closely with the pseudospectral model. As viscosity is reduced, the two model results diverge. We study the MPDATA results in the inviscid limit, using a combination of mathematical analysis and computational experiment. We validate the inviscid MPDATA results as representing the turbulent flow in the limit of very high Reynolds number.

Physical Description

11 p.

Source

  • Submitted to: Proceedings-40th AIAA Aerospace Science Meeting and Exhibit-January 14-17, 2002-Reno, NV

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-5836
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975830
  • Archival Resource Key: ark:/67531/metadc926043

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:40 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Margolin, L. G.; Smolarkiewicz, P. K. (Piotr K.) & Wyszogrodzki, A. A. (Andrzej A.). Implicit turbulence modeling for high reynolds number flows., article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc926043/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.