MODIFIED CHOKE FLOW CRITERION FOR THE TWO-PHASE TWO-FLUID MODEL

PDF Version Also Available for Download.

Description

A choked condition exists when mass flow rate becomes independent of the downstream conditions. In other words, no information can propagate in the upstream direction under this condition. The real part of the solution of the characteristic equation for the model represents velocity of the signal propagation and the imaginary part is the growth (or decay) rate of that signal. Therefore, if the real part of these eigenvalues is positive then no signal propagates in the upstream direction (choosing downstream direction to be the positive direction) resulting in the choke flow. In order to develop the choke criterion, a non-dimensional ... continued below

Creation Information

Singh, Suneet & Mousseau, Vincent A. May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A choked condition exists when mass flow rate becomes independent of the downstream conditions. In other words, no information can propagate in the upstream direction under this condition. The real part of the solution of the characteristic equation for the model represents velocity of the signal propagation and the imaginary part is the growth (or decay) rate of that signal. Therefore, if the real part of these eigenvalues is positive then no signal propagates in the upstream direction (choosing downstream direction to be the positive direction) resulting in the choke flow. In order to develop the choke criterion, a non-dimensional form of the characteristic equation is derived for the standard two-phase two-fluid model. The equation is in the terms of a slip Mach number Ms. It can be shown that the slip Mach number is small for many applications including nuclear reactor safety simulations. The eigenvalues of the characteristic equation are obtained as a power series expansion about the point Ms = 0. These eigenvalues are used to develop a choking criterion for the compressible two-phase flows.

Source

  • International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009),Saratoga Springs, New York,05/03/2009,05/07/2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-09-15438
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 957541
  • Archival Resource Key: ark:/67531/metadc925990

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 6, 2016, 1:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Singh, Suneet & Mousseau, Vincent A. MODIFIED CHOKE FLOW CRITERION FOR THE TWO-PHASE TWO-FLUID MODEL, article, May 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc925990/: accessed January 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.