Nonequilibrium fluctuations in shock compression of polycrystalline [alpha]-iron

PDF Version Also Available for Download.

Description

The existence of mesoscale stress and velocity fluctuation has been recognized by experimentalists and theoretical analysts. Good examples are stress fields around crack tips and in composite materials. However, the issue of heterogeneous and nonequilibrium shock-front dynamics on the grain scale has been largely ignored, in spite of the fact that they must strongly influence the processes such as shear banding, fracture, and phase transition occurring under the above conditions. These phenomena are governed by the interaction of shock wave with local material properties, crystal anisotropy effects, and microstructure, as well as the nature of interfacial boundaries. The traditional diagnostics ... continued below

Physical Description

4 p.

Creation Information

Horie, Y. (Yasuyuki) & Yano, K. (Kazushige) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The existence of mesoscale stress and velocity fluctuation has been recognized by experimentalists and theoretical analysts. Good examples are stress fields around crack tips and in composite materials. However, the issue of heterogeneous and nonequilibrium shock-front dynamics on the grain scale has been largely ignored, in spite of the fact that they must strongly influence the processes such as shear banding, fracture, and phase transition occurring under the above conditions. These phenomena are governed by the interaction of shock wave with local material properties, crystal anisotropy effects, and microstructure, as well as the nature of interfacial boundaries. The traditional diagnostics including VISAR have not been capable of providing spatially resolved information about the nonuniformity of shock dynamics at the grain level. A possible exception in the mid-80's is that of Mescherykov and his associates who quantified the fluctuations in terms of particle velocity dispersion [1]. New emerging measurements that have requisite spatial and time resolutions do indeed exhibit nonequilibrium fluctuations [2]. The purpose of this study is to extend an earlier numerical simulation where we have observed turbulent like velocity fields as well as velocity dispersion in shock compression of polycrystalline copper [3]. The calculated velocity dispersion was comparable to the measurements by Mescheryakov and his associates [1]. We report a numerical study of heterogeneous and nonequilibrium fluctuations in shock compression of {alpha}-iron at the grain level. A quasi-molecular code called DM2 is used to model the interactions of a plane shock wave with grain boundaries and crystal anisotropy over the pressure range of 5-45 GPa. Highly transient eddies that were reported earlier are again observed. We show new features through an elementary statistical analysis. They are (1) a characteristic decay constant for the non-equilibrium fluctuation on the order of 20ns, (2) a resonance phenomenon at an intermediate shock pressure, and (3) a more uniform shock structure for very high pressures.

Physical Description

4 p.

Source

  • Submitted to: Proceedings of the 12th APS Topical Conference, Atlanta, June 26-29, 2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-2961
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975355
  • Archival Resource Key: ark:/67531/metadc925969

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 4:29 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Horie, Y. (Yasuyuki) & Yano, K. (Kazushige). Nonequilibrium fluctuations in shock compression of polycrystalline [alpha]-iron, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc925969/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.