Computational studies and optimization of wakefield accelerators

PDF Version Also Available for Download.

Description

Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz ... continued below

Creation Information

Tsung, Frank S.; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Mori, Warren B.; Vay, Jean-Luc et al. June 16, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

Source

  • Journal Name: Journal of Physics: Conference Series; Journal Volume: 125; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-2245E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 966119
  • Archival Resource Key: ark:/67531/metadc925964

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 16, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 3:03 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tsung, Frank S.; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Mori, Warren B.; Vay, Jean-Luc et al. Computational studies and optimization of wakefield accelerators, article, June 16, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc925964/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.