Transitions of Dislocation Glide to Twinning and Shear Transformation in Shock-Deformed Tantalum

PDF Version Also Available for Download.

Description

Recent TEM studies of deformation substructures developed in tantalum and tantalum-tungsten alloys shock-deformed at a peak pressure {approx}45 GPa have revealed the occurrence of shock-induced phase transformation [i.e., {alpha} (bcc) {yields} {omega} (hexagonal) transition] in addition to shock-induced deformation twinning. The volume fraction of twin and {omega} domains increases with increasing content of tungsten. A controversy arises since tantalum exhibits no clear equilibrium solid-state phase transformation under hydrostatic pressures up to 174 GPa. It is known that phase stability of a material system under different temperatures and pressures is determined by system free energy. That is, a structural phase that ... continued below

Physical Description

PDF-file: 10 pages; size: 1.4 Mbytes

Creation Information

Hsiung, L L; Campbell, G H & McNaney, J M October 19, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 37 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent TEM studies of deformation substructures developed in tantalum and tantalum-tungsten alloys shock-deformed at a peak pressure {approx}45 GPa have revealed the occurrence of shock-induced phase transformation [i.e., {alpha} (bcc) {yields} {omega} (hexagonal) transition] in addition to shock-induced deformation twinning. The volume fraction of twin and {omega} domains increases with increasing content of tungsten. A controversy arises since tantalum exhibits no clear equilibrium solid-state phase transformation under hydrostatic pressures up to 174 GPa. It is known that phase stability of a material system under different temperatures and pressures is determined by system free energy. That is, a structural phase that has the lowest free energy will be stable. For pressure-induced phase transformation under hydrostatic-pressure conditions, tantalum may undergo phase transition when the free energy of a competing phase {omega} becomes smaller than that of the parent phase {alpha} above a critical pressure (P{sub eq}), i.e., the equilibrium {alpha} {yields} {omega} transition occurs when the pressure increases above P{sub eq}. However, it is also known that material shocked under dynamic pressure can lead to a considerable increase in temperature, and the higher the applied pressure the higher the overheat temperature. This means a higher pressure is required to achieve an equivalent volume (or density) in dynamic-pressure conditions than in hydrostatic-pressure conditions. Accordingly, P{sub eq} for {alpha} {yields} {omega} transition is anticipated to increase under dynamic-pressure conditions as a result of the temperature effect. Although no clear equilibrium transition pressure under hydrostatic-pressure conditions is reported for tantalum, it is reasonable to assume that Peq under dynamic-pressure conditions will be considerably higher than that under hydrostatic-pressure conditions if there is a pressure-induced {alpha} {yields} {omega} transition in tantalum. The observation of {alpha} {yields} {omega} transition in shock-compressed tantalum and tantalum-tungsten alloys at {approx}45 GPa in fact reveals the occurrence of a non-equilibrium phase transformation at such a low pressure. We therefore postulated that the equation of state (EOS) based on static thermodynamics, which asserts that the system free energy (G) is a function of volume (V), pressure (P), and temperature (T), i.e., G = F(V, P, T) is insufficient to rationalize the system free energy under dynamic-pressure conditions. Since shear deformation was found to play a crucial role in shock-induced deformation twins and {omega} phase, the density and arrangement of dislocations, which can alter and increase the system free energy, should also be taken into account to rationalize the non-equilibrium phase transformation in shocked tantalum. Typical arrangements of high-density dislocations formed in pure tantalum shocked at {approx}45 GPa are shown in Figs. 1a and 1b. Figure 1a reveals a cellular dislocation structure but no twins or {omega} phase-domains were observed in this region. The formation of low-energy type cellular dislocation structures indicates the occurrence of dynamic-recovery reactions to reduce dislocation density in this region. Figure 1b shows an evenly distributed dislocation structure with a local dislocation density ({rho}) as high as {approx}5 x 10{sup 12} cm{sup -2} according to {rho} {approx} 1/l{sup 2}, where l ({approx}4.5 nm) is the spacing between two dislocations. Here shock-induced twin plates and {omega} phase-domains can be readily seen. These observations provide us a clue that dislocation arrangement and density population, which can alter system free energy through the changes of dislocation self-energy (E{sub s}) and dislocation interaction energy (E{sub ij}), are relevant to the occurrence of shock-induced twinning and phase transformation in tantalum. The objective of this paper is to report new results obtained from pure tantalum and tantalum tungsten alloys shocked at {approx}30 GPa in order to clarify the correlation between dislocation structure (i.e., density and arrangement) and shock-induced twinning and {alpha} {yields} {omega} transition. Emphasis is placed especially on the {alpha} {yields} {omega} transition. Physical mechanisms are subsequently proposed to rationalize the shock-induced twinning and non-equilibrium phase transformation.

Physical Description

PDF-file: 10 pages; size: 1.4 Mbytes

Source

  • Presented at: 2010 TMS Annual Meeting, Seattle, WA, United States, Feb 15 - Feb 18, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-418369
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 972426
  • Archival Resource Key: ark:/67531/metadc925916

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 19, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 10:29 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 37

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hsiung, L L; Campbell, G H & McNaney, J M. Transitions of Dislocation Glide to Twinning and Shear Transformation in Shock-Deformed Tantalum, article, October 19, 2009; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc925916/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.