Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration

PDF Version Also Available for Download.

Description

This thesis presents a measurement of the top quark mass obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t{bar t} likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t{bar t} likelihood as a 2-D function of the top pole mass m{sub t} and {Delta}{sub JES}, where {Delta}{sub JES} parameterizes the uncertainty in our knowledge of the jet energy scale; ... continued below

Physical Description

177 pages

Creation Information

Lujan, Paul Joseph & /UC, Berkeley /LBL, Berkeley December 1, 2009.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

This thesis presents a measurement of the top quark mass obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t{bar t} likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t{bar t} likelihood as a 2-D function of the top pole mass m{sub t} and {Delta}{sub JES}, where {Delta}{sub JES} parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing {Delta}{sub JES} into the likelihood, we can use the information contained in W boson decays to constrain {Delta}{sub JES} and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb{sup -1} of integrated luminosity, requiring events with a lepton, large E{sub T}, and exactly four high-energy jets in the pseudorapidity range |{eta}| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure m{sub t} = 172.6 {+-} 0.9 (stat.) {+-} 0.7 (JES) {+-} 1.1 (syst.) GeV/c{sup 2}, or m{sub t} = 172.6 {+-} 1.6 (tot.) GeV/c{sup 2}.

Physical Description

177 pages

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: FERMILAB-THESIS-2009-26
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/963775 | External Link
  • Office of Scientific & Technical Information Report Number: 963775
  • Archival Resource Key: ark:/67531/metadc925772

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • December 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 30, 2016, 5:10 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lujan, Paul Joseph & /UC, Berkeley /LBL, Berkeley. Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration, thesis or dissertation, December 1, 2009; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc925772/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.