Observation of Exclusive Charmonium Production and \(\gamma\gamma \rightarrow \mu^+\mu^-\) in \(p\bar{p}\) Collisions at \(\sqrt{s} = 1.96\) TeV

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439
3Athens University, Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798
6Istituto Nazionale di Fisica Nucleare Bologna, 9 University of Bologna, I-40127 Bologna, Italy
7Brandeis University, Waltham, Massachusetts 02254
8University of California, Davis, Davis, California 95616
9University of California, Los Angeles, Los Angeles, California 90024
10University of California, San Diego, La Jolla, California 92093
11University of California, Santa Barbara, Santa Barbara, California 93106
12Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13Carnegie Mellon University, Pittsburgh, PA 15213
14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17Duke University, Durham, North Carolina 27708
18Fermi National Accelerator Laboratory, Batavia, Illinois 60510
19University of Florida, Gainesville, Florida 32611
20Laboratori Nazioni di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21University of Geneva, CH-1211 Geneva 4, Switzerland
22Glasgow University, Glasgow G12 8QQ, United Kingdom
We have observed the reactions \(p + \bar{p} \rightarrow p + X + \mu^+ \mu^- \), with \(X \) being a centrally produced \(J/\psi \), in proton-antiproton collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity \(|\eta| < 0.6 \), with \(M_{\mu\mu} \in [3.0, 4.0] \text{ GeV}/c^2 \) and either no other particles, or one additional photon, detected. The \(J/\psi \) and the \(\psi(2S) \) are prominent, on a continuum consistent with the QED process \(\gamma \gamma \rightarrow \mu^+ \mu^- \). Events with a \(J/\psi \) and an associated photon candidate are consistent with exclusive \(\chi_{c0} \) production through double pomeron exchange. The exclusive
vector meson production is as expected for elastic photoproduction, $\gamma + p \rightarrow J/\psi(2S) + p$, which is observed here for the first time in hadron-hadron collisions. The cross sections $\sigma_{data}^{IP}|_{\gamma=p}$ for $p+p \rightarrow p+X+p$ with $X=J/\psi,\psi(2S)$ or χ_{c0} are 3.92 ± 0.62 nb, 0.53 ± 0.14 nb, and 76 ± 14 nb respectively. The cross section for the continuum, with $|\eta(\mu^+)| < 0.6$, $M_{\mu\mu} \in [3.0,4.0]$ GeV/c2, is $\int_{s_{min}}^{s_{max}} \sigma_{data}^{IP}|_{\gamma=p} = 2.7\pm0.5$ pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in exclusive J/ψ production: $\frac{d\sigma}{d\Omega}|_{\gamma=p} < 2.3$ nb at 95% C.L.

PACS numbers:

In central exclusive production processes, $p+p \rightarrow p+X+p$, the colliding hadrons emerge intact with small transverse momenta, p_T [1], and the produced state X is in the central region, with rapidity in the range $-2 \leq |y| \leq +2$, and is fully measured. If regions of rapidity exceeding about 5 units are devoid of particles ("rapidity gaps"), only photon and pomeron, IP, exchanges are significant, where IP consists mostly of two gluons in a color singlet state with charge parity $C = +1$. Odderon, O, exchange, with 3 gluons in a $C = -1$ state[2-4], is allowed but has not yet been observed. A comparison of exclusive J/ψ and $\psi(2S)$ production in hadron-hadron and ep collisions is sensitive to odderon exchange. Using the CDF II detector at the Fermilab Tevatron we previously observed [5] $p+p \rightarrow p+e^+e^-+p$ in agreement with QED, and found candidates [6] for $p+p \rightarrow p+\gamma+\gamma$ and $p+p \rightarrow p+\gamma+\gamma$ consistent with QCD expectations [7]. We have also observed exclusive dijets [8]. In this paper we report measurements of exclusive dimuon production, $X = \mu^+\mu^-$, directly or from J/ψ or $\psi(2S)$ decay, and $\chi_{c0} \rightarrow J/\psi+\gamma+\mu^+\mu^-\gamma$.

Exclusive $\mu^+\mu^-$ production, either direct ($\gamma\gamma \rightarrow \mu^+\mu^-$) (Fig. 1a), or via photoproduction of vector mesons ($\gamma IP \rightarrow V \rightarrow \mu^+\mu^-$)(Fig. 1b), has not previously been observed in hadron-hadron collisions. At the Large Hadron Collider, LHC, in pp collisions with $\sqrt{s} = 14$ TeV, central exclusive production of massive states $X = Z, H, W^+W^-, ZZ$, or $\ell^+\ell^-$, where H is a Higgs boson and ℓ is a slepton are allowed [9]. Apart from their intrinsic interest, our measurements confirm the viability of the proposed LHC studies. In particular the $p+\chi_{c0}+\bar{p}$ (Fig.1c) and $p+H+p$ (as in Fig.1c but with a top quark loop) cross sections are related [10], and $p+\mu^+\mu^-+p$ can be used to calibrate forward proton spectrometers.

We consider here $M_{\mu\mu} \in [3.0,4.0]$ GeV/c2; this region includes the $J/\psi(3097)$ and $\psi(2S)(3686)$ resonances [11], and a continuum from the QED process $\gamma\gamma \rightarrow \mu^+\mu^-$. The theoretical uncertainty on the QED cross section is <0.3%. This process is distinct from Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$), which is negligible in this regime. Exclusive vector mesons, V, can be produced by photoproduction, $\gamma IP \rightarrow J/\psi(2S)$, which has been measured at HERA [12] in ep collisions. In hadron-hadron collisions it can provide a probe of diffraction and VP elastic scattering [3]. We also observe exclusive $\chi_{c0}(3415)$ production, a "double pomeron exchange" process: $IP IP \rightarrow \chi_{c0}$, followed by $\chi_{c0} \rightarrow J/\psi+\gamma$. This is a background to exclusive J/ψ production if the photon is not detected. We do not have detectors able to measure the forward p and \bar{p}, but beam shower scintillation counters (BSC), located along the beampipe, detect products of $p(\bar{p})$ dissociations.

We use pp collision data at $\sqrt{s} = 1.96$ TeV corresponding to an integrated luminosity $L = 1.48$ fb$^{-1}$ delivered to the CDF II detector. This is a general purpose detector described elsewhere [13]; here we give a brief summary of the detector components used in this analysis. Surrounding the collision region is a tracking system consisting of silicon microstrip detectors and a cylindrical drift chamber (COT) in a 1.4 Tesla solenoidal field. The tracking system has $\approx 100\%$ efficiency for reconstructing isolated tracks with $p_T \geq 1$ GeV/c and $|\eta| < 0.6$. A barrel of 216-time-of-flight counters (ToF) outside the COT is surrounded by calorimeters with separate electromagnetic (EM) and hadronic sections covering the range $|\eta| < 3.6$. Drift chambers outside the calorimeters are used to measure muons with $|\eta| < 0.6$ [14]. The regions $3.6 < |\eta| < 5.2$ are covered by lead-liquid scintillator calorimeters (miniplugs [15]), and the BSC counters cover $5.4 < |\eta| < 7.4$. Gas Čerenkov counters covering $3.7 < |\eta| < 4.7$ determine the luminosity with a 6% uncertainty by counting inelastic interactions [16].

The level 1 trigger required at least one muon track with $p_T > 1.4$ GeV/c and no signal in BSC1 ($5.4 < |\eta| < 5.9.$), and a higher level trigger required a second track with opposite charge. The offline event selection follows closely that described in Ref. [5], where we observed exclusive e^+e^- production. We require two oppositely charged muon tracks, each with $p_T > 1.4$ GeV/c and $|\eta| < 0.6$, accompanied by either (a) no other particles in the event, or (b) only one additional EM shower with

*Deceased
\(E_{\text{EM}}^{\text{CM}} > 80 \) MeV and \(|\eta| < 2.1 \). Condition (a) defines an exclusive dimuon event. The exclusivity efficiency \(\varepsilon_{\text{exc}} \) is the probability that the exclusive requirement is not spoiled by another inelastic interaction in the same bunch crossing, or by noise in a detector element. This efficiency depends on the individual bunch-by-bunch luminosities, and is measured [5] as the fraction of bunch crossing triggers that pass the exclusivity requirement (a). We find \(\varepsilon_{\text{exc}} = 0.093 \). The product \(\varepsilon_{\text{exc}} \times L = L_{\text{eff}} = 139 \pm 8 \text{ pb}^{-1} \) is the effective luminosity for single interactions.

After these selections, cosmic rays are the main background. They are essentially all rejected, with no significant loss of real events, by timing requirements in theToF counters and by requiring the 3D opening angle between the muon tracks to be \(\Delta \theta_{3D}(\mu \mu) < 3.0 \text{ rad} \). Within a fiducial kinematic region (FKR): \(p_T(\mu) > 1.4 \text{ GeV/c}, \; |\eta(\mu)| < 0.6, \text{ and } M_{\mu \mu} \in [3.0, 4.0] \text{ GeV/c}^2 \), there are 402 events with no EM shower. The \(M_{\mu \mu} \) spectrum is shown in Fig. 2. The \(J/\psi \) and \(\psi(2S) \) are prominent, together with a continuum. The spectrum is well fitted by two Gaussians with expected masses and widths (dominated by the resolution) and a continuum whose shape is given by the product of the QED spectrum \((\gamma \gamma \to \mu^+ \mu^-) \), acceptance and efficiency, as shown in Fig. 2 (inset). The numbers of events from the fit are given in Table I, with statistical uncertainties. The QED component has an additional systematic uncertainty from the fit shape. The numbers given in Table I for backgrounds, acceptances and efficiencies include systematic uncertainties estimated by varying parameters within acceptable bounds.

Backgrounds to exclusive \(\mu^+ \mu^- \) events are (see Table I) (a) proton dissociation, if the products are not detected in the forward detectors, (b) for the \(J/\psi, \chi_{c0} \) events with a photon that did not give an EM tower above the 80 MeV threshold, and (c) events with some other particle not detected. The probability of a proton \((p \text{ or } \bar{p})\) dissociating at the \(p\gamma p(p^*) \) vertex was calculated with the LPAIR Monte Carlo (MC) [17] to be 0.17, and the probability that all the fragmentation products have \(|\eta| > 7.4 \) to be 0.14. If a proton dissociates, the decay products may not be detected through BSC inefficiency, estimated from data to be 0.08\pm0.01. The dissociation probability at the \(p\gamma p(p^*) \) vertex is taken from the ratio of single diffractive dissociation to elastic scattering at the Tevatron [18] to be 0.24\pm0.05. We assume the dissociation products are detected with the same probability in photon- and pomeron-induced fragmentation. The resulting dissociation backgrounds are given in Table I, with systematic uncertainties.

We compare the kinematics of the muons, specifically \(p_T(\mu^+ \mu^-) \) and \(\Delta \phi_{\mu \mu} \), with simulations for the three classes: \(J/\psi, \psi(2S) \) [19], and QED [17] with \(M_{\mu \mu} \in [3.2, 3.6]\%[3.8, 4.0] \text{ GeV/c}^2 \) to exclude the \(J/\psi \) and \(\psi(2S) \). The distributions agree well with the simulations; the few events that are outside expectations are taken to be non-exclusive background. Figure 3 shows the distributions of \(p_T(\mu^+ \mu^-) \). As expected \(\langle p_T \rangle \) is smaller for the QED process, and the data agree well with STARLIGHT, apart from two events with \(p_T > 0.8 \text{ GeV/c} \) where no events are expected. Choosing cuts in

![FIG. 2: Mass \(M_{\mu \mu} \) distribution of 402 exclusive events, with no EM shower, (histogram) together with a fit to two Gaussians for the \(J/\psi \) and \(\psi(2S) \), and a QED continuum. All three shapes are predetermined, with only the normalizations floating. Inset: Data above the \(J/\psi \) and excluding 3.65 < \(M_{\mu \mu} \) < 3.75 GeV/c^2 (\(\psi(2S) \)) with the fit to the QED spectrum times acceptance (statistical uncertainties only).](image)
$p_T(\mu^+\mu^-)$ and $\Delta\phi_{\mu\mu}$ that are 98% (96%) efficient for the LPAIR events we find the fraction of data events exceeding these cuts, and conclude that the non-exclusive background is $(9\pm5)\%$ of the observed(QED) events. The $\psi(2S)$ data are well fitted by the STARLIGHT photoproduction MC [17, 19]. The distribution of $p_T(J/\psi)$ is well fitted by STARLIGHT, apart from six events with $p_T(J/\psi) > 1.4$ GeV/c (Fig. 3b). These could be due to non-exclusive background, some χ_{c0} radiative decays with an undetected photon, or an odderon component.

To measure χ_{c0} production we require one EM shower with $E_{EM} > 80$ MeV in addition to the two muons; if two adjacent towers have enough energy they are combined. The fit to the dimuon spectrum has 65 events in the J/ψ component, only one $\psi(2S)$ and eight continuum events. We interpret the 65 events as $\chi_{c0} \rightarrow J/\psi + \gamma$ production and decay. The distribution of the mass formed from the J/ψ and the EM tower energy, while broad, has a mean value equal to the χ_{c0} mass. The E_{EM} spectrum is well fitted by an empirical function $A \times E_{EM}^{2.5} \times e^{-12.5 \times E_{EM}}$ (in GeV), which extrapolates to only three χ_{c0} candidates under the 80 MeV cut. The $p_T(J/\psi)$ and $\Delta\phi_{\mu\mu}$ distributions for the events with an E_{EM} signal are consistent with all these J/ψ being from χ_{c0} decay, as simulated by the CHICMC MC [20]. Additional photon inefficiency comes from conversion in material, 7±2 %, and dead regions of the calorimeter, 5.0±2.5 %, giving a total inefficiency 17±4 %, which gives a background to exclusive J/ψ of 4.0±1.6 %.

We calculate acceptances and efficiencies for QED using the LPAIR [17] and STARLIGHT [19] MC generators for QED, J/ψ and $\psi(2S)$, and CHICMC [20] for χ_{c0} production. Generated events are passed through a GEANT-based [21] simulation of the CDF detector. The level 1 trigger efficiency for muons rises steeply between 1.4 GeV/c and 1.5 GeV/c, where it exceeds 90%. As we triggered on a single muon, the trigger efficiency for events with two muons is > 99% for $M_{\mu\mu} > 3$ GeV/c2. We parametrize the detector acceptance \times reconstruction efficiency as $A_\varepsilon = 0.6 - 0.5 \times e^{-3.22(M-3.05)}$ (in GeV/c2).

Figure 2 (inset) shows the subset of data above 3.15 GeV/c2 (to exclude the J/ψ), excluding the bin 3.65-3.75 GeV/c2 which contains the $\psi(2S)$. (The high point at 3.6 GeV/c2 may contain a small, ≈ 2 event, contamination of $\psi(2S)$.) The curve shows the product of the QED spectrum and acceptance \times efficiency, A_ε, with only the normalization floating, from the 3-component fit to the full spectrum. The coarser binning enables one to see that the continuum data is in agreement with the QED expectation. The integral from 3 GeV/c2 to 4 GeV/c2 is 77 ± 10 events, and after correcting for backgrounds and efficiencies (Table I), the measured cross section for QED events with $|\eta(\mu^{+}\mu^{-})| < 0.6$ and $M_{\mu\mu} \in [3.0, 4.0]$ GeV/c2 is $\sigma = 2.7\pm0.5$ pb, in agreement with the QED prediction 2.18 ± 0.01 pb [17].

For the prompt J/ψ cross section we take the number of events from the Gaussian fit, subtract backgrounds and correct for A_ε (see Table I). We obtain $\sigma(J/\psi) \times B(FKR) = 28.1\pm4.4$ pb, for both muons in the fiducial region. We divide by the branching fraction to $\mu^+\mu^-$ (B) and use the STARLIGHT MC to convert this (by a factor 8.18±0.15) to $\frac{d\sigma}{dy}|_{y=0}(J/\psi) = 3.92 \pm 0.62$ nb. This agrees with the predictions $2.7^{+0.8}_{-0.9}$ nb [19] and 3.4 ± 0.4 nb [22] among others [23, 24]. We find $\frac{d\sigma}{dy}|_{y=0}(\psi(2S)) = 0.53 \pm 0.14$ nb (Table I) compared with a prediction [19] $0.46^{+0.11}_{-0.04}$ nb. The ratio $R = \frac{\psi(2S)}{(J/\psi)} = 0.14\pm0.05$ is in agreement with the HERA value [12] $R = 0.166\pm0.012$ at similar $\sqrt{s}(\gamma p)$.

After correcting the 65 χ_{c0} candidates for backgrounds and efficiencies, including a 17±4 % loss due to photon conversion and inefficiency, and applying the branching fraction $B(\chi_{c0} \rightarrow J/\psi + \gamma) = 0.0128\pm0.0011$ [11] we find $\frac{d\sigma}{dy}|_{y=0}(\chi_{c0}) = 76 \pm 14$ nb. The $\chi_{c2}(3556)$ may be present, although it is strongly suppressed by the $J_z = 0$ rule [10] and is forbidden at 0° scattering angle. Exclusive $gg \rightarrow \chi_{c1}(3511), J^{PC} = 1^{++}$ is forbidden by the Landau-Yang theorem, but may occur with off-shell gluons [25]. Because of the limited $M(J/\psi + \gamma)$ resolution we cannot distinguish these states; we assume χ_{c1} and χ_{c2} to be negligible. If several states χ_{c} are present, $\sum B(\chi_{c}|(FKR) = 8.0\pm1.3$ pb. Theoretical predictions for $\frac{d\sigma}{dy}|_{y=0}(J/\psi) < 2.3$ nb for odderon exchange (OPE).

In conclusion we have observed, for the first time in hadron-hadron collisions, exclusive photoproduction of J/ψ and $\psi(2S)$, exclusive double pomeron production of χ_{c0}, and the QED process $\gamma\gamma \rightarrow \mu^+\mu^-$. The QED 2-photon process $\gamma\gamma \rightarrow e^+e^-$ has previously been ob-
served in e^+e^-, ep and nuclear collisions, and recently by CDF [5] in pp collisions. The photoproduction process has previously been studied in ep collisions at HERA, with similar kinematics ($\sqrt{s}(\gamma p) \approx 100$ GeV) and the cross sections are in agreement. We put an upper limit on an odderon contribution to exclusive J/ψ production. Our observation of exclusive χ_{c0} production implies that exclusive Higgs boson production should happen at the LHC [9] and imposes constraints on the $p+p \rightarrow p+H+p$ cross section.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Russian Foundation for Basic Research; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Slovak R&D Agency; and the Academy of Finland.

[1] A cylindrical coordinate system is used with the z-axis along the proton beam direction; θ is the polar angle and ϕ is the azimuthal angle. Transverse momentum is $p_T = |p| \sin \theta$, and transverse energy is $E_T = E \sin \theta$ where E is the energy. For the charmonium states we use longitudinal rapidity $y = -\ln \frac{E+p_z}{E-p_z}$.