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Abstract: The phenomenological theory of elastic-plastic deformations is reconsidered in the light of

recent opinion regarding the constitutive character of their constituent elastic and plastic components.

The primary role of dissipation in the physics of plastic evolution is emphasized and shown to lead to

the clarication of a number of open questions. Particular attention is given to the invariance properties

of the elastic and plastic deformations, to the kinematics of discontinuities, and to the role of material

symmetry in restricting constitutive equations for elastic response, yield and plastic evolution.

1. Introduction

The modern literature on the phenomenological theory of metal plasticity emphasizes a multiplicative

decomposition of the deformation gradient into elastic and plastic factors in which the former measures

distortion relative to some unstressed or relaxed conguration of a local neighborhood of a material

point. The denition of the elastic deformation in terms of information about the stress immediately

implies that the former is inherently both constitutive and kinematic in nature. This contrasts with con-

ventional ideas in continuum theory according to which kinematical and dynamical variables are viewed

as being conceptually independent of a constitutive framework. The constitutive/geometric nature of

the constituent elastic and plastic deformations a!ords considerable latitude in resolving ambiguities

about their properties that are unavoidable in a purely geometric interpretation. The purpose if the

present work is to extract denitive statements about these variables from specic constitutive hypothe-

ses and thus to clarify the structure of initial-boundary-value problems for the motion of a continuum

in the presence of plasticity. Our views combine three major lines of thought in the recent literature on

plasticity. These are (i) the recognition of the constitutive character of elastic and plastic deformations

[1], (ii) the central roles played by incompatibility and Eshelby’s energy-momentum tensor [2,3], and
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(iii) the recognition of the primary role of dissipation in plastic evolution [4,5]. We concentrate on the

purely mechanical theory as this is su"cient to highlight the issues of main concern.

The following notation is adopted in which ! is the translation (vector) space of a real three-

dimensional Euclidean point space ":

#$% the linear space of linear transformations (tensors) from ! to !&

'%(#$% the group of invertible tensors.

)*+ = {A !#$%: A= A!, the transpose of A}, the linear space of symmetric tensors; also, the

linear operation of symmetrization on #$%.

)-. = {A !#$%: A!= "A}, the linear space of skew tensors; also, the linear operation of skew-

symmetrization on #$%.

/012+ = {A ! '%(#$%: A! = A"1, the inverse of A, with 3"=1}, the group of rotations.

The determinant and cofactor of A are denoted by 3" and A!, respectively, and A! = 3"A
"! if

A ! '%(#$%& It follows easily that (AB)! = A!B!& Further, #$% is equipped with the Euclidean inner

product and norm dened by A ·B = 10(AB!) and |A|2 = A ·A, respectively, where 10(·) is the trace&

We make frequent use of relations like A ·BC = AC! ·B = C! ·A!B and AB ·CD = ABD! ·C, etc.,

which follow easily from 10A = 10(A!) and 10(AB) = 10(BA)& It is well known that #$% = )*+#)-.,

the direct sum of )*+ and )-., where 2)*+A = A+A! and 2)-.A = A"A!& The tensor product

a$ b of vectors is dened by (a$ b)v = (b · v)a for all v in !, where b · v is the standard inner product

of vectors. The gradient of a di!erentiable function 4: #$%% R is the tensor 4A dened by

4(A+B) =4(A)+4A ·B+ 5(|B|)& (1)

A similar formula applies to di!erentiable vector-valued functions dened on ". Following standard

practice we reserve the notation & for the associated gradient.

We assume the conventional balances of linear momentum and moment of momentum to apply to

arbitrary parts of the body 6. Thus,

7$(T+ 8!b = 8!a, T !)*+ (2)

at points in the conguration 9! occupied by the body at time 1, where x is the position therein of a

material point : ! 6, 8!(x, 1) is the associated mass density, 7$( is the divergence operator based on x,

a is the material acceleration and T(x, 1) is the Cauchy stress. In practice the referential form

;$(P+ 8#b = 8#ẍ, where P = TF! (3)

is the Piola stress, is often most useful, where ;$( is the divergence with respect to X, the position of

: in a xed reference placement 9# with mass density 8#(X), superposed dots stand for material time

derivatives (<=<1 at xed X), and where F = &!(X, 1) is the gradient at : of the map x = !(X, 1) from

9# to 9!& We also assume the mass to be conserved, this being expressed simply by 8# = 8!3$ , where

3$ (> 0) is the local ratio of volume in 9! to that in 9#&
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We are interested in applications of the theory to shock physics and thus append the jump relations

[6]

? [8#] = 0, [P]N+ ?28#[ x] = 0, (4)

where N is the local unit normal to a surface ) of discontinuity in 9# with speed ? in the direction of

N, and [·] is the discontinuity on )&

The basis of the idea of a local stress-free state, and an associated manifold of intermediate cong-

urations, is examined in Section 2. This is grounded in the notion of an equilibrium unloading process

together with appropriate constitutive hypotheses on the elastic response. In Section 3 the constituent

elastic and plastic deformations are discussed. Stokes’ theorem is used to describe the notion of in-

compatibility and associated dislocation densities. This is adapted, in Section 4, to describe surface

dislocation in terms of discontinuous elastic and plastic deformation elds. Surface dislocation con-

tributes to the net Burgers vector associated with a surface that intersects the discontinuity surface,

and furnishes the extension of Hadamard’s lemma for coherent interfaces to the non-coherent case. The

extension e!ectively removes the severe rank-one constraint on the discontinuity imposed at a coherent

interface, and thereby confers an additional degree of freedom on the kinematics of deformation. The

basic constitutive framework is discussed in Section 5, where the elasticity of the body is described and

the dissipation associated with plastic evolution is expressed in terms of Eshelby’s tensor. Of central

importance is the assumption introduced there of strong dissipation, according to which plastic evo-

lution is inherently dissipative. This imposes a constraint on the kinds of evolution that qualify as

plasticity, constituting, in e!ect, part of the denition of plastic ow. It is used, in Section 6, to derive

unambiguous transformation rules for the elastic and plastic deformations under superposed rigid-body

motions. Material symmetry restrictions on the elastic response and on constitutive equations for yield

and plastic ow are discussed in Sections 7 and 8, following ideas put forth in [1] and [7]. Finally, in

Section 8, the latitude a!orded by the constitutive character of the plastic deformation is used to dispose

of a long-standing controversy surrounding plastic spin.

2. Unloading elastic bodies to zero stress

A central tenet of the considered model is the idea that stress is purely elastic in origin, the associated

deformation being measured from a stress-free local conguration. It is therefore of no small importance

to have some justication of this assumption. To explore this issue we appeal to the mean-stress theorem,

according to which the mean Cauchy stress in a body 6 is zero if it is in equilibrium and subjected to

vanishing surface tractions and body forces [8]. Thus, the mean stress

T̄(1) = [(5@(9!)]
"1
Z

%!

T(x, 1)7! (5)

vanishes, where T is the Cauchy stress and (5@(9!) is the volume of 9!& This theorem is valid for stress

elds that are di!erentiable and hence continuous in 9!& The mean-value theorem is then applicable and

guarantees the existence of x̄ ! 9! such that T(x̄, 1) = T̄(= 0)& Let

7(9!) = sup
x&y#%!

|x" y| (6)

3



be the diameter of 9!. For 7% 0 we have |x" x̄|% 0 for all x in 9! and the continuity ofT(x, 1) furnishes

T(x, 1) % T(x̄, 1) = 0& Thus, if the hypotheses of the mean-stress theorem are satised, then the local

stress can be brought arbitrarily close to zero by making the diameter of the body correspondingly

small against any length scale at hand. This result is of course independent of material constitution and

furnishes theoretical justication for the measurement of residual stress by cutting out a small part of

a body and observing its change in shape.

For elastic bodies the Cauchy stress is given in terms of the deformation from a reference conguration

9# of 6 by the well-known formula [9]

3$T =AFF
!, (7)

where A (F) is the strain energy per unit volume of 9#& The function A (F) is frame invariant, in the

sense thatA (F) =A (QF) for any rotation Q, if and only if it is determined by the right Cauchy-Green

deformation tensor C = F!F; thus, A (F) = Â (C) and the well-known relation AF = 2F()*+ÂC)

furnishes

3$T = 2F()*+ÂC)F
!& (8)

The Cauchy stress vanishes if and only if Â is stationary. Let 9# be stress free, so that Â is

stationary at C = I. We assume that C = I is the unique stationary point. This is assured by adopting

the constitutive assumption that the strain energy is a strictly convex function of C with a minimum

at C = I. Thus, we assume that

Â (C2)" Â (C1) > )*+ÂC(C1) · (C2 "C1); C2 6= C1, with Â (I) = 0 and )*+ÂC(I) = 0&

(9)

This in turn guarantees that stress relaxation is energetically optimal and reects the phenomenology

typical of metals in the elastic range provided that

|C" I| B C, (10)

where C depends on the material at hand.

To elaborate, imagine cutting 9! into an arbitrarily large number of sub-bodies of arbitrarily small

diameter and relaxing the loads thereon. The mean-stress theorem together with our constitutive hy-

potheses imply that equilibrium states of these sub-bodies are stress-free, minimum-energy congurations

in a Euclidean point space " provided, as we assume here, that no energy is needed to generate the

new surfaces created by this process. If these relaxed congurations cannot be made congruent in the

absence of strain, then they do not t together to form a connected whole in Euclidean space. The

material is said to be dislocated. For a given sub-body, consider two relaxed congurations 9#1 and 9#2

in " related by the map X2 = µ(X1)& Then 7X2 = A7X1 where A, with 3" > 0, is the gradient of µ.

Let F1 and F2, respectively, be the gradients of the maps of these congurations to 9! at the material

point :& Thus, 7x = F17X1 = F27X2 = F2A7X1, and therefore

F1 = F2A& (11)

We wish to characterize any non-uniqueness in the local unloading process and so require that F1 and
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F2 generate the same Cauchy stress in 9!:

(A1)F1(F
!
1)
"1 = T = (A2)F2(F

!
2)
"1, (12)

where A1(F1) and A2(F2), respectively, are the strain-energy functions based on 9#1 and 9#2 & These

are related, modulo a constant, by

A1(F1) = 3"A2(F2)& (13)

To see this consider a parametrized path of deformations and let a superposed dot denote the derivative

with respect to the parameter. Using A =AF · F = TF! · F with A xed, we then obtain

A1(F1) = TF
!
1 · F1 = TF!2A! · F2A = TF!2A

!A! · F2 = 3" A2(F2), (14)

and hence (13).

The Cauchy stress vanishes at : if and only if

)*+[(Â1)C1 ] = 0 and )*+[(Â2)C2 ] = 0, (15)

where

Â1(C1) = 3"Â2(C2) and C1 = A
!C2A& (16)

Our constitutive hypotheses, applied to both strain-energy functions, then imply that C1= C2= I and

hence that A!A = I& Thus,

A ! /012+& (17)

Since this holds identically in the given sub-body, the fact that A is the gradient of a map µ implies

that A is uniform [10; pp. 49, 50]. The unloading process then determines a local relaxed conguration

in " modulo orientation and translation. This degree of freedom is seen to follow directly from our

constitutive hypotheses and the consequent interplay between deformation and stress in the denition

of unloading.

We identify an arbitrarily small open ball surrounding a material point : ! 6 with a tangent space

to a global di!erentiable manifoldM. Let F map the tangent space DM(') ofM at : to ! at x in 9!&

We stipulate that F!F be the strain at : required to make the collection of stress-free sub-bodies in " t

together in 9!. The non-existence of a global di!erentiable map from 9! to the disjoint relaxed sub-bodies

in " implies that points : in the unstressed manifoldM cannot be associated with a position eld and

thus thatM is not Euclidean. The eld F does not then satisfy the usual compatibility condition which

follows from the existence of such a map. The incompatibility is typically identied with a distribution

of Burgers vectors via an analogy with the geometry of defective crystal lattices. This idea is the basis

of the elegant di!erential-geometric theory of self-stressed bodies containing continuously distributed

dislocations [11-19].

Our assumption of a unique energy well in the domain of Â excludes certain models of crystal

elasticity proposed by Ericksen [20] and Hill [21]. These models are motivated by the observation that

there exist unimodular non-orthogonal transformations of a regular cubic lattice, say, which generate

lattices that are geometric copies of each other. If A1(F) and A2(F) are the strain-energy functions for
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two lattices related in this manner, then it is natural to assume that they respond identically to a given

deformation and thus that they satisfy the symmetry condition

A1(F) =A2(F)& (18)

Our view (see also [22]) is that symmetries of this kind do not t naturally in the framework of Noll’s

simple elastic solid [23]. For, if G is an element of the symmetry set of the rst lattice, then by Noll’s

Rule KGK"1 belongs to the symmetry set of the second, where K is the gradient of the deformation

that carries the rst lattice to the second. We then have

A1(F) =A1(FG) and A2(F) =A2(FKGK
"1), (19)

which imply that G =K and G = K"1 are symmetry transformations for both (hence all) lattices so

related. Thus,

A (F) =A (FK) =A (FK"1), (20)

where A stands for A1 or A2& Let e(; $ = 1, 2, 3, be the axes of the rst cubic lattice, normalized by

the (uniform) lattice spacing and aligned with the edges of a typical cube. Then a transformation of the

required type is furnished by the simple shear K = I+Ee1$e2, where E is an integral multiple (positive

or negative) of the lattice spacing. The inverse of K is a simple shear of amount "E and also furnishes

a map of the lattice to itself. The presence of such K and its inverse in the symmetry set is thus to be

expected on physical grounds. In turn, this implies that K!CK belongs to the domain of the strain-

energy function Â whenever C does, for any amount of shear equal to an integral multiple (positive

or negative) of the lattice spacing. Elastic response of this kind may be understood by regarding the

bonds between atoms at the corners of a lattice cell as nonlinear springs. This analogy suggests that

Noll’s simple elastic material does not furnish an acceptable model of the physics at hand as arbitrarily

large spring extensions would have to be admitted, whereas interatomic bonds presumably fail to persist

when extended beyond nite limits.

Here, we discard the elastic interpretation and instead adopt the mechanism of plasticity to account

for the underlying phenomenon. Thus, we re-interpret (18) as a statement to the e!ect that the elastic

response of the lattice to a deformation F is una!ected by plastic slipK (orK"1). We retain Noll’s view

insofar as a superposed elastic distortion F is concerned. Variations in F at xedK generate variations in

stress in accordance with the elastic properties of the crystal, provided that such variations engender non-

zero strains belonging to the domain of the elastic constitutive function. Thus, we introduce an elastic

energy and conne symmetry transformations to subgroups of the orthogonal group, in accordance with

Noll’s original distinction between simple solids and simple uids [23]. Such transformations preserve

inequality (10) and the energy-minimizing value, I, of C& To model the invariance embodied in (18), it

is then necessary to extend the constitutive structure beyond Noll’s simple elastic solid to encompass

the evolution of K& This of course is precisely the aim of Plasticity Theory. The shortcomings of Noll’s

simple materials as models of plasticity are discussed further in [4, 24].

The connection between (20) and plasticity seems to be what Ball and James [25] have in mind in

their discussion of lattice symmetry. Specically, their view is that the domain of the strain-energy
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function should be limited in accordance with a restriction like (10) above so as to exclude from the

symmetry group of the elastic response function the possibly large lattice shears typically associated

with plasticity. The adjustment means that if C belongs to the domain of Â then K!CK does not,

if the amount of shear is su"ciently large. Instead, the latter would necessarily be associated with

inelastic behavior. The restriction advocated by Ball and James excludes such shears from the theory

of the elastic response of crystals. To e!ect such exclusion it is su"cient to assume (10) and to restrict

the symmetry set to a subset of the orthogonal group.

3. Deformation and incompatibility

The foregoing considerations lead us to introduce a local stress-free intermediate conguration 9( of

a material point : and to identify this with the tangent space DM(') at : to a di!erentiable manifoldM

having a generally non-Euclidean structure. The properties of this manifold may be inferred from our

discussion but are not needed explicitly in this work. We reserve the labels 9# and 9! for global reference

and current congurations of 6, respectively. These are regions in the Euclidean point space ". The

positions of a point : ! 6 in 9# and 9! are denoted byX and x, respectively, and we assume the existence

of an invertible di!erentiable map !%" such that x = !%"(X, 1)& The subscript is suppressed unless it is

needed for clarity and we typically write x = !(X, 1)& Let F be the gradient of the deformation from 9#

to 9!:

F = &!(X, 1), (21)

where & is the gradient with respect to X& Let H be the local map from the tangent space 9( to ! at

x ! 9!, and let K be the map from 9( to ! at X ! 9#& We assume that 3) and 3* are positive. Thus,

H and K"1 are the elastic and plastic deformations, respectively. Unlike F, they are not, in general,

gradients of position elds. This issue is associated with the fact that position elds do not exist inM

due to its non-Euclidean character. We have [2]

H = FK& (22)

An adaptation of Stokes’ theorem [14, 26, 27] furnishes
Z

+,

F7X =

Z

,

(FG0@F)!N7H, (23)

where ), with boundary <), is an oriented surface in a simply-connected region of 9# with local unit-

normal eld N(X) for X ! ), and FG0@ is the referential curl operator. This theorem holds if F is a

di!erentiable function of X. The curl is dened in terms of the usual curl operation on vector elds by

[26, 27]

(FG0@A)c = FG0@(A!c); c xed, (24)

which furnishes (23) as an immediate consequence of Stokes’ theorem for vector elds. From (21) we

have that F7X = 7! and the left-hand side of (23) vanishes. The arbitrariness of ) and thus of its local

orientation N then implies that FG0@F = 0 in 9#& This also follows directly from the di!erentiability

of &!& Conversely, if FG0@F = 0 in a simply-connected part of 9# containing ) then the right-hand
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side of (23) vanishes. This implies that the line integral
R
!
F7X is independent of the path ! in such

a region and thus, following a classical argument [28; Sect. 59], that F is the gradient of a (vector)

potential which we identify with the deformation !& It follows that the vanishing of FG0@F is necessary

and su"cient for compatibility of F in a simply-connected region; i.e., for the existence of a position

eld !(X, 1) such that &! = F&

The properties of the manifoldM imply that FG0@K"1 need not vanish. In this case we dene

B(), 1)
&
=

Z

+,

K"17X =

Z

,

(FG0@K"1)!N7H, (25)

where the right-most equality follows if the eld K"1 is smooth. This is referred to as the Burgers

vector associated with ) in recognition of its interpretation in dislocation theory. Thus, the existence

of a non-zero Burgers vector is due to the incompatibility of the plastic deformation or, equivalently, to

the non-existence of a position eld in M with (referential) gradient K"1. Using the (smooth) elastic

deformation instead, we dene

b(I, 1)
&
=

Z

+-

H"17x =

Z

-

(JG0@H"1)
!
n7K, (26)

where I is the image in 9! of ) ' 9# with unit-normal eld n(x, 1) and JG0@ is the spatial curl operator

based on x& It follows from (22) and Nanson’s formula n7K = F!N7H that b(I, 1) = B(), 1) [26]. Then

H"1(x, 1) is incompatible if and only if K"1(X, 1) is incompatible. The tensors

"# = FG0@K
"1 and "! = JG0@H

"1 (27)

thus provide measures of the incompatibility per unit area of a material surface in 9# and 9!, respectively.

Accordingly, we refer to these as the referential and spatial dislocation densities.

In [26] an associated tensor " called the true dislocation density is introduced. This satises

3*K
"1FG0@K"1= " = 3)H

"1JG0@H"1, (28)

wherein the outer equality may be shown to follow from (22). The name is justied by the remarkable

fact that " is invariant under arbitrary di!erentiable variations of the congurations 9# and 9!& To see

this we consider a variation of 9# from 9#1 to 9#2 dened by the one-to-one map X2 = #(X1) with

invertible gradient R = &1#, where &1 is the gradient with respect to X1& Using obvious notation we

have K"1
1 7X1 = K

"1
2 7X2 and therefore

Z

,2

(FG0@2K
"1
2 )

!
N27H2 =

Z

+,2

K"1
2 7X2 =

Z

+,1

K"1
1 7X1 =

Z

,1

(FG0@1K
"1
1 )

!
N17H1, (29)

where )2 = L()1), provided that

K2 = RK1& (30)

Nanson’s formula in the form N27H2 = R
!N17H1 and the arbitrariness of )1 then combine to give [26]

3.FG0@2K
"1
2 = RFG0@1K

"1
1 , (31)

which yields the invariance of " by virtue of (28)1 and 3*1
3. = 3*2

& Further, (30) and (31) may

be used with an obvious adjustment in notation to establish the outer equation in (28) directly. The
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same reasoning based on the second of eqs. (28) proves the invariance of " under arbitrary one-to-

one di!erentiable variations of 9!& In e!ect " furnishes a measure of dislocation in the body per se in

the sense that it is insensitive to the placement of the body in any conguration in "& It is thus no

coincidence that " is associated with an intrinsic property of the material manifold M, namely the

torsion of the a"ne connection induced by K"1 and its (referential) gradient (or H"1 and its spatial

gradient) [15, 16].

4. Interfaces

We have seen that if K"1 is a smooth function of X in a simply connected region of 9#, then there

exists a dislocation density "# dened on 9# such that

B()$, 1) =

Z

,!

"!#N$7H, (32)

where "# = FG0@K"1 and )$ is any orientable open surface in said region with local orientation eld

N$. If "# does not vanish identically then the body is dislocated in this region. Consider a surface

) ' 9# of discontinuity of the plastic deformation K"1 and suppose )$ cuts ) orthogonally. Let

! = ) ( )$ be the curve of intersection. If K"1 is di!erentiable in the regions on either side of ),

then Stokes’ theorem, and hence (32), may be applied to the individual parts )±$ of )$ separated by )&

Adding the two expressions and using ! = <)+$ ( <)
"
$ , we then have

Z

,!

"!#N$7H =

Z

,+!%,
"
!

(FG0@K"1)!N$7H =

Z

+,!

K"17X +

Z

!

[K"1]7X, (33)

where [K"1] = (K"1)+ " (K"1)". We use the superscripts ± to denote the limits of functions dened

on 9# as ) is approached from the regions into which N and "N are directed, respectively, where N is

the unit-normal eld on ). We also use square brackets, as indicated, to denote the ordered di!erence

between these limits. Let t =N$ |!, so that 7X =N× t7G in the nal integral, where G measures

arclength on !& We dene a tensor eld $# on ) - the (referential) surface dislocation density - such

that

[K"1](t×N) = $!#t on ), for all unit t ! D,(X), (34)

the tangent plane to ) at X& The net Burgers vector associated with )$ is then given by

B()$, 1) =

Z

,!

"!#N$7H+

Z

!

$!#t7G& (35)

Let t1, t2 ! D,(X) be such that {t1, t2,N} is a positively-oriented orthonormal basis. Writing

[K"1] = [K"1]I with I = N$N+ t/$t/ leads to

[K"1] = k$N" $!#%(N), (36)

where k is an arbitrary 3-vector and

%(N)= t1$t2"t2$t1 (37)

is the two-dimensional permutation tensor density on D,(X)& This satises %(N)= R%(N)R! for all two-

dimensional orthogonal transformations R that preserve the orientation of D,(X)& Therefore any pair of

vectors in D,(X) which with N form a positive orthonormal basis may be used in the denition of %(N)&
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We may solve (36) using %2(N)= "1(N), where 1(N)= I"N$N is the identity for D,(X), to obtain

$!#1(N)= [K
"1]%(N)& (38)

This determines the action of $!# on D,(X)& The action of $
!
# on N is indeterminate and may be set

to zero without loss of generality. The formula (38) is equivalent to a result stated by Bilby [29] and

used extensively in the subsequent literature on crystal interfaces and grain boundaries [30, 31]. Bilby’s

result is not consistent with his denition of surface dislocation density as stated in the text of [29]. He

denes the latter to be the nite limit obtained by invoking Stokes’ theorem, collapsing )$ onto !, and

requiring the dislocation density "# to become unbounded. However, the indicated limit vanishes under

conditions in which Stokes’ theorem is valid. More recently, surface dislocation density has been dened

in terms of discontinuities of crystal lattice vectors across ) using a formula equivalent to (33) [32].

IfK"1 is the gradient of a continuous and piecewise twice di!erentiable deformation, then the second

and third integrals in (33) vanish. The arbitrariness of ! then implies that [K"1
](t×N) = 0 for all

t ! D,(X), yielding Hadamard’s formula [K
"1
] = k$N for a coherent interface [33]. Equations (36)

and (38) extend Hadamard’s result to general non-coherent (i.e., dislocated) interfaces.

Proceeding from (26) and (27)2 instead, we derive

[H"1] = h$ n" $!!%(n) and $!!1(n)= [H
"1]%(n), (39)

where h is an arbitrary 3-vector, n is the orientation of a surface I ' 9! of discontinuity of H"1(x, 1)

and $! is the spatial surface dislocation density. This emerges from an obvious adjustment to (33), and

reduces in the coherent case to Hadamard’s rank-one form [H"1] = h$ n. Evidently the generalization

to non-coherent interfaces yields a full-rank expression which relaxes the constraint on the limits (H"1)±

associated with a coherent interface. Accordingly, surface dislocation is an additional interfacial degree

of freedom which is available to minimize the elastic energy in the adjoining material. In general, this

implies that non-coherent interfaces are energetically optimal, which presumably accounts for the stress

relaxation typically attributed to the mechanism of surface dislocation. For example, our constitutive

hypotheses imply that adjoining crystal grains are in their minimum-energy states if H!H = I therein.

By the polar decomposition theorem, H"1 then reduces to a rotation in each grain, and (39)2 furnishes

the required surface dislocation density in terms of the rotation discontinuity. The so-called tilt and

twist boundaries furnish illustrative examples [14; Sec. 3.9].

The referential and spatial surface dislocation densities are not independent. For, if I is the image of

) under the overall deformation, i.e. if I = M(), 1), then the existence of a continuous inverse deformation

!"1(x, 1) mapping 9! to 9# implies that any jump in F"1 is of Hadamard’s form [F
"1
] = a$ n. Using

this in the inverse of (22) together with

[H"1] =
!
K"1® [F"1] + [K"1]

!
F"1

®
, (40)

where h·i is the average of the limits of the enclosed function on either side of the interface, we derive

h$ n" $!!%(n) =
!
K"1® a$ n+ k$

!
F"!

®
N" $!#%(N)

!
F"1

®
& (41)
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Nanson’s formula ensures that hF"!iN is parallel to n. Multiplication on the right by %(n) thus furnishes

$!! in terms of $
!
#:

$!!1(n)= "$
!
#%(N)

!
F"1

®
%(n), (42)

and the normal component of (41) yields a relationship among the vectors a,k and h:

h =
!
K"1®a + (n ·

!
F"!

®
N)k" $!#%(N)

!
F"1

®
n& (43)

There is no requirement that ) ' 9# be a material surface. If it is not, then

? [F] + [ x]$N = 0, (44)

provided that the deformation is continuous, where ? is the velocity of ) in the direction of N [6]. Using

this with

[F]
!
F"1

®
+ hFi [F"1] = 0, (45)

we derive

[ x]$
!
F"!

®
N = ? hFi a$ n& (46)

5. Stored energy and dissipation

The elastic response is assumed to be described by a strain-energy functionA (H) per unit volume of

a reference conguration. This function describes the response of the material to distortion induced by

the map from 9( to ! at x ! 9!& Mainly for illustrative purposes, we conne attention here to functions

A (H) that do not vary from one material point to another. This restriction denes materially uniform

bodies [7, 15, 16]. Let " be the strain energy per unit volume of 9#& Then, from (22), " may be regarded

as a function of F and K dened by

"(F,K) = 3"1* A (FK)& (47)

The strain energy at xed K is given by "*(F, X) = "(F,K(X)) and depends explicitly on X only if

the distribution of plastic deformation is not uniform.

We assume the stress to be purely elastic in origin and thus impose (7) with F replaced by H:

3)T =AHH
!& (48)

Using P = TF! with F!K!=H!, we then derive

AH = PK
!& (49)

This furnishes

A = PK! · H = 3*P · HK
"1
, (50)

yielding

P · F = " if K = 0& (51)
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In the general case, we use

" = 3*
"1[ A " ( 3*=3*)A ] (52)

with

3*=3* =K
"! · K, (53)

A =AH · H =AHK
! · F +F!AH · K, (54)

and (49), to obtain

" = P · F + 3"1* (F!P"AI)K! · K, (55)

which may be recast as

P · F = "+;, (56)

where

; = E · KK
"1

(57)

and where

E = "I"F!P (58)

is Eshelby’s energy-momentum tensor [34]. These results, due to Epstein and Maugin [2], have been

reproduced in several forms in the subsequent literature [3, 5, 35-37].

Further, using (47) and (49), Eshelby’s tensor may be written in the form

E = 3"1* K"!E 0K!, (59)

where

E 0 =A I"H!AH (60)

is purely elastic in origin. This in turn yields

3*; = E 0 ·K"1 K& (61)

Equation (56) furnishes a decomposition of the stress power per unit volume of 9# into an energetic

part and a part arising from the evolution of plastic deformation. Following conventional ideas we

assume the part not accounted for by the energy to be dissipated, i.e.

; ) 0 for all K& (62)

It is obvious that ; vanishes if K vanishes. It is natural to expect that the converse is also true; i.e., that

; vanishes only if K vanishes. This is tantamount to the assumption that the evolution of plasticity is

inherently dissipative. In e!ect, this restriction denes plastic evolution in part through a constitutive

assumption. Thus, we adopt the hypothesis:

E · KK"1
> 0 if and only if K 6= 0& (63)

A jump condition restricting the evolution of discontinuities may be obtained by specializing the

Clausius-Duhem inequality. The relevant analysis is summarized in [6] and yields

?N · ([E] + 1
28#?

2[F!F])N ) 0& (64)
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6. Superposed rigid motions

Granted the symmetry of the Cauchy stress, (48) implies that

AH ·!H = 0 (65)

for any xed ! ! )-.& Consider a parametrized path H(G) dened by H(G) = !H with H(0) = H0&

The unique solution [10] is H(G) = Q(G)H0, where Q is a rotation with Q(0) = I and QQ
!
= !& This

means that A = 0 on the path in question; i.e., that A (QH0) =A (H0) for any rotation Q& Standard

arguments based on Cauchy’s theorem for hemitropic functions [9] or on the polar decomposition theorem

then furnish (with the subscript 0 suppressed)

A (H) = Â (C)), where C) = H
!H, (66)

and thus

3)T =HS(C))H
!, (67)

as in (8), where

S(C)) = 2)*+ÂC# & (68)

Henceforth we assume that all constitutive hypotheses introduced in Section 2 apply to the function

Â (C))&

Note that in the course of deriving (67) we have assumed only the symmetry of the Cauchy stress. In

particular, we have not imposed the invariance of the strain-energy function under superposed rigid-body

motions. Indeed, in conventional nite elasticity theory, it is known that invariance of the strain-energy

function under superposed rigid-body motions is equivalent to symmetry of the Cauchy stress [9].

This issue leads us to consider the transformation rules for the elastic and plastic deformations under

superposed rigid-body motions. In a way, this question is moot if we understand M to be a material

manifold. For, M is then indi!erent to the placement of its points in " and the issue of invariance

under changes of such placements does not arise [24]. The fact that K"1 maps ! at X ! 9# to DM(')

would then lead naturally to the conclusion that K is invariant under superposed rigid-body motions.

This would then dictate, via (22), the transformation rule H% QH, where Q(1) is the spatially uniform

rotation in the conventional rule F % QF. This is tacitly assumed in most works concerned with the

invariance issue (e.g. [1, 26, 38, 39, 40]).

In the present work we proceed in a di!erent manner that emphasizes the constitutive character of

the constituent elastic and plastic deformations. We know from conventional theory that

F% QF (69)

in a superposed rigid-body motion, where Q(1) ! /012+. This follows from the fact that x % Qx+ c

in such a motion, with x = !(X, 1) and c a function of 1 alone. We also assume that

T% QTQ!, and therefore P% QP& (70)
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The line of reasoning leading to (69) cannot be applied to H and K because there is no position eld in

M associated with material points :& Instead, we appeal to the aforementioned result in nite-elasticity

theory and dene superposed rigid-body motions by the requirement that A (= Â ) have the same

value at any two H related by a superposed rigid-body motion. Let H1(1) and H2(1) be two elastic

deformations so related and dene Z(1) = H2H
"1
1 & We require that Â (H!

1Z
!ZH1) = Â (H!

1H1) for

H1 ! #$% with 3)1 > 0. In particular, then, Â (Z
!Z) = Â (I)& Our constitutive hypotheses imply that

Â (Z!Z) > Â (I) if Z!Z 6= I& The two statements are reconciled only if Z!Z = I and it follows, since

30 > 0, that Z ! /012+. Therefore, in a superposed rigid motion,

H% Q)H, (71)

where Q) is a rotation. Since the argument is local, this rotation may depend on x (or X) in addition

to 1& It follows immediately from (71) that C) , Â (C)) and S(C)) are invariant under superposed

rigid motions.

To obtain the transformation rule for the plastic deformation K, we assume that superposed rigid

motions do not generate dissipation, so that the dissipations associated with any two motions related

by a superposed rigid-body motion are identical. Clearly E is invariant under superposed rigid motions.

This can be seen from (58) and the invariance of ", which is implied by that of A and 3* , the latter

following from (22), (69) and (71). Further, from (48), (60) and (67) we have

E 0 = Â (C))I"C)S(C)), (72)

which is also invariant. Suppose K1(1) and K2(1) are related by a superposed rigid-body motion and

let Z(1) = K2K
"1
1 & We assume the superposed rigid motion to commence at time 10 so that Z(10) = I&

If ;1 = 3
"1
*1
E 0 ·K"1

1
K1 is the dissipation associated with K1, then the dissipation ;2 associated with

K2 satises

3*2;2 = 3*1;1 + E 0 ·K"1
1 Z"1 ZK1& (73)

Invoking the invariance of 3* and the assumed invariance of the dissipation then yields

E 0 ·K"1
1 Z"1 ZK1 = 0, (74)

for any plastic deformation K1& To obtain a necessary condition we set K1 = JI, where J > 0, yielding

E 0 · Z"1 Z = 0& Hypothesis (63) is easily seen to be equivalent to the statement:

K 6= 0 if and only if E 0 ·K"1 K > 0& (75)

It follows that Z vanishes and hence that Z(1) = Z(10) = I& This is also su"cient for (74) and for the

invariance of the dissipation. Thus, K2= K1 and K is invariant under superposed rigid motions, i.e.

K%K& (76)

As a corollary, we then have Q) = Q(1), implying that Q) is spatially uniform.

In addition to furnishing the transformation rules for the elastic and plastic deformations under

superposed rigid motions, the strong dissipation hypothesis and our constitutive hypotheses on the
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elastic response also imply that plastic evolution ceases in the absence of elastic distortion. For, if

C) = I then Â and S vanish; therefore E 0 and E vanish, ; = 0 and (63) yields K = 0&

7. Material symmetry

The function A (H) is subject to restrictions imposed by material symmetry. These are of the kind

one nds in conventional nite elasticity theory and are crucial to the understanding of elastic/plastic

response. Accordingly, a brief review of the concept is appropriate before proceeding. Thus, if two local

congurations 9(1 and 9(2 are used to describe the stress T at a material point in 9!, then

T = (A1)H1
(H!

1)
"1 and T = (A2)H2

(H!
2)
"1, (77)

where A1(H1) and A2(H2) are the associated strain-energy functions. These equations are identical to

(12), the role played there by F now being assumed by H& Accordingly, if A is a map from 9(1 to 9(2 ,

then

H1=H2A, (78)

and if A is xed at the material point :, then consistency between the two expressions for T requires

that (cf. (13))

A1(H1) = 3"A2(H2)& (79)

This formula species the change in the form of the strain-energy function induced by any local time-

independent change of reference at a given material point.

Suppose now that there exists a local change of reference G1, with 311 = 1, such that A2(H) =

A1(H) with 3) > 0; the two local references then respond identically to a given deformation. Using

(78), we nd that

A1(H) =A1(HG1)& (80)

It is well known that the set of all such G1 is a group G1, say, the symmetry group associated with 9(1 &

If the body is materially uniform, then A1(H) does not depend explicitly on : ! 6 (or on X ! 9#)&

This restriction is satised by requiring that G1 be independent of : ! 6 [15, 41].

Combining (79) with (80), we have

3"A2(H) =A1(HA) =A1(HAG1) = 3"A2(HAG1A
"1)& (81)

In other words,

A2(H) =A2(HG2), with G2= AG1A
"1, (82)

which is Noll’s Rule G2 = AG1A"1 relating the symmetry groups of the two local references.

We have seen in Section 2 that our constitutive hypotheses determine the placements of stress-free

local equilibrium congurations in " modulo orientation and translation. Thus, if 9(1 is a local relaxed

conguration, then any 9(2 is also such a conguration provided that the transformation A from 9(1 to

9(2 is a rotation. Further, G1 is a subgroup of the orthogonal group if and only if the same is true of G2.

Any G2 ! G2 is obtained simply by rotating some G1 ! G1 by A to obtain G2= AG1A
!& For example,
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if e(; $ = 1, 2, 3 are the orthonormal axes of a cubic lattice in 9(1 , then the 180
& rotationG1 = 2e3$e3"I

about e3 maps the lattice to itself and thus belongs to G1& The corresponding element of G2 is given by

G2 = 2e
0
3$e03 " I, where e0(= Ae(&

This result is of the greatest importance for the practical implementation of the theory. It implies

that the symmetry group G1 for the local stress-free 9(1 may be xed once and for all, provided that this

group is a sub-group of the orthogonal group. Then, given the response functionA1(H), we generate the

response function relative to any relaxed local conguration 9(2 by setting A2(H) =A1(HA), where A

is a suitable rotation. By construction, all such congurations are equivalent insofar as the computation

of the stress is concerned. The same issue is discussed from a di!erent viewpoint in [1].

For example, if the material in conguration 9( exhibits cubic symmetry, and if the elastic strain is

su"ciently small to justify a quadratic approximation to the strain-energy function, then [42]

Â = 1
2F1("11 +"22 +"33)

2 + F2("11"22 +"11"33 +"22"33) + F3("
2
12 +"

2
13 +"

2
23), (83)

where F(; $ = 1, 2, 3 are material constants, "(2 = E · )*+(e($e2), {e(} is a basis of orthonormalized

vectors aligned with the cube axes, and

E = 1
2(C) " I) (84)

is the elastic strain. The linear and quadratic invariants of E are common to each of the ve subclasses

of cubic symmetry [42]. Accordingly, (83) applies to all kinds of cubic symmetry. From (68) we then

obtain

S = F1(10E)I+ F2[("22 +"33)e1$e1 + ("11 +"33)e2$e2 + ("11 +"22)e3$e3]

+F3["12(e1$e2+ e2$e1) +"13(e1$e3+ e3$e1) +"23(e2$e3+ e3$e2)]& (85)

Our requirement that Â be a convex function of C) is satised if and only if it is a convex function

of E& In the quadratic case this in turn is satised if and only if the energy is a positive-denite function

of E& To construct necessary conditions for this, we set all "(2 = 0 except "12(= "21)& The resulting

inequality can then be satised only if F3 > 0, which in turn ensures that the nal quadratic form in

(83) is positive denite. Next, we set all o!-diagonal components "(2 to zero, along with "33& We then

require
1
2F1("11 + "22)

2 + F2"11"22 > 0 (86)

for all "11, "22& For this it is necessary and su"cient that F1 > 0 and F2 ! ("2F1, 0)& Necessary

conditions for positive-deniteness are thus given by

F1 > 0, F3 > 0, "2F1 B F2 B 0& (87)

To derive su"cient conditions we write (83) in the form

Â = N ("11, "22) + N ("11, "33) + N ("22, "33) + F3("
2
12 +"

2
13 +"

2
23), (88)

where

N (H,6) = 1
4F1(H

2 +62) + (F1 + F2)H6& (89)
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Su"cient conditions for positive-deniteness are F3 > 0 and N (H,6) > 0, which holds if and only if

F1 > 0 and F21 > 4(F1 + F2)
2& The latter are equivalent to F1=2 > |F1 + F2| & Taken together we have

F1 > 0, F3 > 0, "3
2F1 B F2 B "

1
2F1& (90)

From the foregoing discussion it is clear that, in the presence of convexity, the response functions

relative to any other stress-free local conguration are obtained from those given simply by substituting

e0(= Ae( in place of e(, where A is a suitable rotation. Accordingly, since these congurations are, by

construction, equivalent insofar as the computation of the stress in 9! is concerned, we may x the basis

{e(}, and hence the symmetry group G%$ , once and for all. For example, we may identify e( with their

values in some known conguration of the body, which may then serve as a reference conguration 9#&

This is not to say that we identify 9( with 9#; rather, we simply require that G%$ be insensitive to plastic

ow, as suggested by the physics of crystal slip [14, 43]. Similar ideas are imposed a priori as part of

the denition of plastic deformation in [1, 38, 39].

In the isotropic case the quadratic approximation to the strain-energy function and the associated

expression for the stress are, of course, well known. Thus,

Â = 1
2L(10E)

2 + OE ·E and S = L(10E)I+ 2OE, (91)

where L and O are the Lamé moduli. Necessary and su"cient conditions for convexity are that O > 0

and L+ 2
3O > 0&

8. Flow and yield

To complete the model we require a ow rule for the evolution of plastic deformation K& In view of

the structure of the dissipation inequality (63), it is natural to consider rules of the form

F(K, K, H, H, E, E ·, "#) = 0, (92)

where F is a tensor-valued function. It is assumed, in line with our assumption of material uniformity,

that this function does not depend explicitly on :& The presence of the dislocation density in ow rules

and yield criteria may be motivated by G.I. Taylor’s formula giving the ow stress on a slip system as

a function of the density of the relevant type of dislocation [26, 43, 44, 45]. Thus, dislocation density is

expected to play a role in yield and ow whenever work hardening is in evidence.

(a) Invariance requirements

Following Epstein [7], we impose the requirement that equation (92) be invariant under compatible

changes of the reference conguration 9#. The reason for this is that the choice of reference is in principle

a matter of convenience and hence irrelevant to the physical processes under study. Precisely the same

viewpoint was adopted in the derivation of (13) by invoking the insensitivity of the Cauchy stress to the

choice of reference.
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To e!ect this program in the present context, we observe from (58) that the function of H, K and

E dened by

E! &= 3"1$ F"!EF! (93)

satises

E! = PI"T, (94)

where T is the Cauchy stress and P = 3"1$ " is the energy per unit volume of 9!& These are insensitive

to the choice of reference conguration. Accordingly, if 9#1 and 9#2 are two reference congurations

related by a compatible deformation, then the associated Eshelby tensors are

E1 = 3$1F!1E!F"!1 and E2 = 3$2F!2E!F"!2 , (95)

respectively, where F1= F2R and R is the gradient of the map from 9#1to 9#2 , this following on use of

(30) with H1= H2& Therefore [7],

E2 = 3"1. R"!E1R!& (96)

The assumed insensitivity of (92) to the choice of reference then implies that

F(K1, K1, H1, H1, E1, E ·1, "#1)

= F(K2, K2, H2, H2, E2, E ·2, "#2)

= F(RK1, R K1, H1, H1, 3
"1
. R"!E1R!, 3"1. R"!E ·1R!, 3"1. R"#1), (97)

where (27)1 and (31) have been used and we have assumed the function F to be invariant. A necessary

condition follows by setting R equal to the instantaneous local value of K"1
1 [7]. This is permissible

because (92) is presumed to hold at a xed instant and a xed material point. This means that the

identication of R with K"1
1 in (97) imposes no relationship between their time derivatives or their

gradients. In particular, the fact that R is compatible and independent of 1 (when regarded as a

function of X and 1), whereas K"1
1 is generally incompatible and dependent on 1, is irrelevant insofar

as (97) is concerned. We then have

F(K, K, H, H, E , E ·, "#) = F(I, K"1 K, H, H, E 0, 3*K!E ·K"!, "), (98)

where (28)1 has been used and E 0 is dened by (59). Now, it is straightforward to show that

3*K
!E ·K"! = (E 0)· + E 0(K"1 K)! " (K"1 K)!E 0 " E 010(K"1 K), (99)

so that the functional dependence on 3*K!E ·K"! may be eliminated in favor of (E 0)· and other argu-

ments of F & Further, if we impose the invariance of the function F under superposed rigid-body motions

then it is una!ected by substituting Q(1)H in place of H& Equating Q! identically to the rotation in the

polar factorization of H, we then have

F(I, K"1 K, H, H, E 0, 3*K!E ·K"!, ") = G(K"1 K, C) , C) , E 0, (E 0)·, "), (100)

for some function G, where the invariance of " under superposed rigid motions has been used, this

following from the fact that " is invariant under compatible variations of 9! (Section 3 and [26]). Its

further invariance under compatible variations of 9#, together with

E 0 = 3)H!E!H"!, (101)

18



may then be used to show that (100) yields (97)1 for any time-independent R, so that (100) is necessary

and su"cient for the stated invariance, provided that the function G is invariant. We note from (72)

that the fourth and fth arguments of G are determined by the second and third and may therefore be

eliminated. Imposing (92), we consider special cases of (100) of the form

K"1 K = H(C) , C) , ")& (102)

Our constitutive hypotheses on the strain-energy function Â (C)) ensure that the relation between

C) and S = 2)*+ÂC# is one-to-one. Accordingly, S and S may replace C) and C) as arguments of

H.

(b) Plastic spin

We observe from (72) that M(C)) ! )*+, where

M(C)) = E
0C) & (103)

To embed this fact in the model, we write the dissipation (cf. (61)) in the form

3*; =M ·K"1 KC
"1
) & (104)

Hypothesis (63) is then equivalent to the statement

K 6= 0 if and only if M ·K"1 KC
"1
) > 0& (105)

It follows immediately that K vanishes if K"1 KC
"1
) ! )-.& In other words, the latter does not corre-

spond to a bona de evolution of plasticity. Conversely, if K 6= 0 then K"1 KC
"1
) is not skew. This of

course should not be construed to mean that that latter is symmetric. However, it does beg the question

of how the skew part of K"1 KC
"1
) should be interpreted. This is the issue of plastic spin, which is of

signicant ongoing concern in the plasticity literature (e.g. [1, 40, 46]). To address it, we exploit the

latitude a!orded by the constitutive character of K and adopt the constitutive assumption

K"1 KC
"1
) ! )*+& (106)

In e!ect, this resolves the issue simply by requiring that indeterminate variables vanish.

The ow rule (102) simplies accordingly. We have

K"1 KC
"1
) = S(C) , C) , "), (107)

where

S(C) , C) , ") = H(C) , C) , ")C"1) ! )*+& (108)

The plastic deformation then satises

K =KS(C) , C) , ")C) ; K(10) =K0, (109)

with " given by (28)1.
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The specialization to rate-independent response is of particular interest in applications. In this case

we require the ow rule to be insensitive to the time scale, so that S is homogeneous of degree one in

its second argument, i.e.

S(C) , L C) , ") = LS(C) , C) , ") for all L ! R& (110)

Di!erentiating with respect to L and evaluating the result at L = 0 furnishes the necessary and su"cient

condition

S(C) , C) , ") =M(C) , ")[ C) ], (111)

whereM is a fourth-order tensor possessing the major symmetry A · M[B] = B · M[A] for all A,B !

)*+&

(c) Material symmetry

It is obvious from its structure that the function S (or H) depends on the local conguration 9(&We

are concerned with material symmetry and thus with the question of how the ow rule transforms under

variations of these congurations. The role of material symmetry in this context is discussed in the

comprehensive review by Cleja-Tigiou and Soos [1] and independently by Epstein [7]. Thus, consider a

map from 9(1 to 9(2 , as in Section 7. Assume x = !(X, 1) to be given. Imposing (22) and (78) at xed

F, we have

K1=K2A& (112)

Writing (109) for both local congurations, we are then led, using obvious notation, to the rule

S2(C)2 , C)2
, "2) = AS1(C)1 , C)1

, "1)A
!, (113)

where, for A xed at :, as in Section 7,

C)1 = A
!C)2A and C)1 = A

! C)2A& (114)

We use (28)1 to relate "1 and "2. Thus,

"1 = 3*1K
"1
1 FG0@K

"1
1 = 3"3*2A

"1K"1
2 FG0@(A

"1K"1
2 )& (115)

If the change of local reference is uniform, in the sense that A is independent of : (hence, of X), we

have [26]

FG0@(A"1K"1
2 ) = (FG0@K

"1
2 )A

"!, (116)

yielding

"1 = 3"A
"1"2A

"!& (117)

Thus, if the function S1 is known, then S2 is generated by the formula

S2(C) , C) , ") = AS1(A!C)A, A
! C)A, 3"A

"1"A"!)A!& (118)
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Since the local congurations 9(1 and 9(2 are stress-free by denition, our constitutive hypotheses give

A ! /012+, a!ording the simplication

S2(C) , C) , ") = AS1(A!C)A, A
! C)A, A

!"A)A!& (119)

Suppose now that the transformation is such that both local references respond identically. Let G1

be such a transformation. Then the functions S1 and S2 coincide, and (119) furnishes

G!
1S1(C) , C) , ")G1 = S1(G

!
1C)G1, G

!
1
C)G1, G

!
1"G1)& (120)

Here we identify G1 with any element of G1, the symmetry group associated with 9(1 & The restriction

to uniform A (hence uniform G1) is due to our prescription for enforcing the condition of material

uniformity in Section 7.

A straightforward but involved calculation based on (118) and (120) furnishes the analog of Noll’s

Rule for plastic ow, but we do not record this here.

In practice, given G1, (120) is solved by regarding S as a function of three symmetric tensors and one

vector [47]. This reduction is achieved by writing S as a function of )*+" and )-."& If a is the axial

vector of )-.", then G!()-.")G may be replaced by G!a in the statement of material symmetry, for

any G ! G1 ' /012+. To see this we observe that for any vector u,

G!a×G!u = G!(a× u) = G!
()-.")u = [G!()-.")G](G

!
u), (121)

so that G!a is the axial vector of G!()-.")G& With this simplication, the problem of solving (120)

for the canonical form of the response function is tractable [47]. It is eased considerably in the rate

independent case in which the functional dependence on C) is linear.

In the case of isotropy, C) commutes with S(C)), so that E 0 ! )*+& It follows from (63) and the

argument leading from (105) to (106) that if K 6= 0, then K"1 K ! )*+, and thus from (107) that

C) also commutes with S& This means that H ! )*+, where H is now a hemitropic function of its

arguments. However, the present model, in which dislocation density gures in the determination of the

state of the material, is not appropriate in the case of isotropy. This is due to the degree of freedom

H%HG a!orded by material symmetry. If G belongs to a continuous group, as in the case of isotropy

or transverse isotropy, then the dislocation density is highly non-unique and is therefore not a state

variable. The issue is discussed in [15; Thm. 8] and investigated in [41]. There is no such di"culty

in the case of a discrete group, however. In the isotropic case, Riemannian curvature derived from the

plastic strain furnishes a unique measure of defectiveness of the material. The associated theory entails

signicant complications vis à vis that considered here [48].

Conventionally, ow is considered to be possible only if the material is in a state of yield. This

is enforced by requiring the pertinent variables to belong to a certain manifold, assumed here to be

expressible in the form

Q(K, H, E, "#) = 0, (122)

which is preserved by compatible changes of reference conguration and by superposed rigid-body mo-

tions. From the foregoing it is immediate that such invariance yields the reduced form

Q = R(C) , "), (123)
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which is subject to the restriction

R(C) , ") = R(G
!C)G, G

!"G) (124)

due to material symmetry, this being meaningful only if the symmetry group is discrete. Further, we

assume the response to be elastic, in the sense that K = 0, for all C) and " such that R B 0& This

elastic range is assumed to contain C) = I, for consistency with our earlier nding that plastic ow

vanishes in the absence of elastic distortion.

Often further constitutive hypotheses are introduced which lead to a relationship between the yield

function and ow rule. We consider these and their implications elsewhere in the context of specic

applications of the general theory.

The initial-boundary-value problem for x = !(X, 1) is specied by substituting the Piola stress (cf.

(3)2, (48), (49), (67))

P = (&!)" (125)

into (3)1, where

" = 3"1* K[S(C))]K
!
, with C) =K!(&!)!(&!)K, (126)

is the 2nd Piola-Kirchho! stress relative to 9# and K is the solution to (109).

(d) Small elastic strain

If the elastic strain is small, then S = /(|E|) and, from (72) and (103),

M, E 0 = "S+ 5(|E|), (127)

so thatM and E 0 agree to leading order. To obtain an estimate for the right-hand side of (109), we use

(84) to dene

S 0(E, E, ") = S(I+ 2E, 2 E, ")& (128)

Since K vanishes in the absence of elastic distortion (Section 6), we have S 0(0, E, ") = 0 by virtue of

(107), and if S 0 is a smooth function of its rst argument, (109) furnishes

K"1 K = T (E, E, ") + 5(|E|), (129)

where T (E, E, ") is a symmetric-tensor-valued function linear in E& In the rate-independent case it is

also linear in E& Writing S(E) for the linear approximation to S (see, for example, (85) and (91)2) we

then have

3*; = "S(E) · T (E, E, ") + 5(|E|2)& (130)

A necessary condition for strict dissipation follows on dividing by |E|2 and passing to the limit. Thus,

if K 6= 0, then

S(E) · T (E, E, ") B 0& (131)

Given the one-to-one relationship between S and E implied by our constitutive assumptions, we may

write

K"1 K = R(S, S, ") + 5(|S|), (132)
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in which S is non-dimensionalized by the largest modulus in the linear function S(E), and R(S, S, ") =

T [E(S), (E(S))·, "] is a symmetric-tensor-valued function linear in S (and also in S in the rate-

independent case). It is then necessary that

S · R(S, S, ") B 0 (133)

whenever K 6= 0& Further, since, under material symmetry, E and S transform to G!EG and G!SG,

respectively, the representation problems for T (E, E, ") and R(S, S, ") are the same as that for S,

except of course that the former are eased considerably by the linear dependence on the rst arguments,

or by the bilinear dependence on the rst two arguments in the case of rate independence.

In the same way, if the yield function R depends smoothly on its rst argument, then

R(C) , ") = 2(E, ") + 5(|E|2), (134)

where 2 contains terms linear and quadratic in E. Our constitutive hypotheses imply that this may

be written as a similar function of S& These functions are subject to material symmetry restrictions

which follow trivially from (124). Taylor’s formula for the ow stress in single crystals involves a linear

relationship between the square of stress and the operative dislocation density. This suggests that a

linear dependence of 2 on " is relevant. Yield functions of this kind (modulo dislocation density) have

recently been studied [49] and correlated with experimental data on materials having various kinds of

symmetry. These may be adapted directly to the present framework by using S as the operative stress

measure and regarding G%$ as the relevant symmetry group.

Finally, we observe that the present model, based on the idea of a stress-free manifold, does not admit

back stress as a constitutive variable. Back stress is thought to be responsible for the Bauschinger e!ect

[40]. Instead, back stress is regarded as residual stress arising from a dislocation density distribution and

a consequent distribution of elastic strain. In principle, the residual stress eld may be determined from

the dislocation density distribution [14, 50] and is therefore a feature of the solution to a suitably posed

initial-boundary-value problem. Its presence e!ectively means that the proximity of the local stress

state to the yield manifold varies over the body, and thus that yield in a loaded body is non-uniformly

distributed. From this point of view the Bauschinger e!ect is structural, rather than constitutive, in

nature.
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