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for Boolean function classifiers that can 

Stack Filter Classifiers 
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Abstract 
Just as linear models 
mean and weighted average, 
statistic models the me­
dian and weighted median. This can 
be continued informally to ad­
ditive models in the case of the mean, and 
Stack Filters in the case of the median. Both 
of these model classes have been extensively 
studied for and processing, but 
it is surprising to find that for pattern classifi­
cation, their treatment has been significantly 
one sided. Generalized additive models are 
now a major tool in pattern classification and 
many different algorithms have been 
developed to fit model parameters to finite 
data. However Stack Filters remain largely 
confined to signal and processing and 
learning algorithms for classification are yet 
to be seen. This paper is a step towards Stack 
Filter Classifiers and it shows that the ap­
proach is interesting from both a theoretical 
and a practical pers}:>ecti 

1. Introduction 

nonlinear filter for noise 
suppression in and processing (Wendt 
et al., 1986). Several model classes related to Stack 
Filters have been for classification includ­
ing morphological networks (Ritter & Sussner, 1996), 
min-max networks (Yang & Maragos, 1995) and order 
statistics (Turner & Ghosh, 1999). One of the reasons 
why Stack Filters have not been directly applied to 
classification problems is because Stack Filter classi­
fiers appear to reduce to a known problem: learning 
a Boolean function. In this paper we show that on 
closer inspection, Stack Filters for classifi­
cation leads to a different Boolean function learning 
problem than has been traditionally considered. The 

the International Con­
ference on lVlacmne Do not distribute. 

most similar prior work in this respect is the Positive 

Boolean Function classifier suggested in (Han, 2002). 


Since Stack Filter classifiers reduce to Boolean func­

tion classifiers, they also share many properties with 

decision tree including fast and simple im­

plementation, and increased interpretability. Some of 

the difficulties encountered with these types of classi­

fiers include high approximation error and combina­

torial learnin!! oroblems. Several . , 


. to address these diffi­
culties in different ways. Traditionally tree models are 

built with a top-down method, and then 

to control (Quinlan, 1993). Alternatively 

models can be construck'<i incrementally where over­

fitting is controlled by step-wise approximation of a 

regularized loss function (Y Freund, 1997). More 

recently theoretical results and increased computing 

resources have enabled the development of optimal 

learning algorithms over the class of dyadic decision 

trees (manchard et aL, 2007). These methods have 

been applied successful to practical problems and pro­

vide an exact minimization of a complexity penalized 

loss function. 


In this paper we propose an 

the last in that we suggest a ~ 


ing the problem as a Stack Filter, we arrive at a new 
and unique method to control over-fitting. 

2. Main Results 

To present our main results we define some basic nota­
tion. We consider two-class classification, where we are 
given a set ((x(l), y(l)), ... , (x(N), y(N))} of 
N points, x E , with labels, y E {-I, I}, drawn 
from a distribution Px y. The task is to find a model 
(or function) F : jRD -'> jR that has small error 
e{F) ). Classification perfor­

excess error of the clas­
to the Bayes optimal classifier 

and can be viewed as a combination 
of approximation estimation errors 
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ties are related to bias and variance): 

-e* inf e* ) 
FrEF + 

(1) 

The first term is estimation error and is due to the 
fact that we only have a finite number of examples to 
select the best model from the model class:F. The 
second term is approximation error and is due to the 
fact that the Bayes classifier is not represented in the 
model class. These two errors have conflicting needs: 
a common way to reduce approximation error is to 
increase the capacity of the model class but this typi­

increases the estimation error. The learning algo­
rithm must balance these needs and the most common 
,pproach is to choose a function F that minimizes a 

set error: 

t E arg min e(F, L) (2)
FEF 

A 1 N 

F argmin N ~ 
 (3)

FEF L..... 
i=l 

where L: -+ lR is a loss function. The choice of 
loss function affects both the estimation and approx­
imation errors of t and must be carefully chosen. A 
popular approach is to define a very rich model class 
and then parameterize the loss function in a way that 
allows the tradeoff to be easily tuned to the applica­
tion: Ly(F(x), y), At one extreme of;, the loss func­
tion would define a classifier with zero approximation 
error and at the other extreme, a classifier with zero 
estimation error. We would also like both errors to 
decrease as N increases. It would also be desirable if 
the value of ; was well behaved, or in SOme way easy 
to tune e.g. it is a smooth function of the 
excess error, and/or it is constrained to a small, finite 
number of values. 

Support vector machines provide one solution to this 
problem for Reproducing Kernel Hilbert space model 

and in this case the loss function includes a 
parameter. In this paper we suggest a 

loss function and calibration for Stack Filter 
classifiers with several desirable Dfooerties. In 
ular we show that: 

1. For misclassification loss: 

L(F(x), y) = l{F(x)r'Y} (4) 

a Stack Filter minimizer can be found via a linear pro­
gram of O(N) variables. 

2. For large-margin misclassification loss: 

L"'I(F(x), y) = l{yF(x)<"'I} (5) 

a Stack Filter minimizer 

E arg min e(F,Lr)
FEF 

is equivalent to minimizing misclassification loss with 
a Stack Filter from a restricted function class: 

E arg min e(F,L) (7)
FEF,,! 

~ ••• <:;: :Fl ~:F. This parameter 
is monotonically related to the size of the Stack Filter 
function class and is also discrete and bounded. 

3. For large margin hinge loss 

L~(F(x), y) = (;- yF(x)h (8) 

a Stack Filter mlllHlllzer also minimizes the sum of 
misclassification loss functions: 

"'I 

E arg min ~ 
FEF L..... 

"'1'=-"'1 

This result implies that large-margin hinge loss is a 
good choice for optimizing stack filter classifiers. It has 
one parameter, which determines the size of the model 
class considered during optimization, and it minimizes 
the on that parameter, which makes it eas­
ier to tune, The size of the model clai,s although 

can be made arbitrarily and minimization 
over :F is exact with a linear program of O(2;D) vari­
ables. 

Currently the main limitation to minimizing Stack Fil­
ters under hinge loss is the size of the linear program. 
In Section 6 we suggest a related solution method, 
which can scale to practical problem sizes. This solu­
tion method sacrifices some of the advantages associ­
ated with the hinge loss solution such as interpret 

efficiency of implementation. However the ap­
on practic 

lems and suggests several new avenues of research. 

3. Stack Filters 

Stack Filters are defined using threshold decomposi­
tion and rnonotonicity constraints. Given a real valued 
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input vector x [Xl, X2, ••• ,xDJ we define a threshold­
ing function U = X ~ c that prod uces a binary vector 
with components Ui = l{x;;;'c}' We then define a Stack 
Index Filter. Sf; JRD ----> {1, ... , D} as: 

D 

=Lf(,r;~ 
d=1 

where X(db is the dth smallest component of x and 
f ; {O, 1} ----> {O, 1} is a positive Boolean function 
(PBF). A Boolean function is positive (or monotone, 
non-decreasing) if it satisfies the stacking constraint 
that Ui ;;;, Vi, Vi implies f(u) ;;;, f(v). A Boolean 
function that is defined using 'and' and 'or', but no 

satisfies this constraint. A Stack Filter, 
----> JR, is related to a Stack Index Filter 

the relationship; 

There is a one-to-one correspondence between the class 
of positive Boolean functions, the class of Stack Index 
Filters and the class of Stack Filters, and we use the 
terms interchangeably. 

3.1. Stack Filter Classifiers 

The first step in applying Stack Filters to classifica­

reference point at °and means we can use the sign of 

problems is to extend the input soace using the 
Lor-map M: 

Paredes & Arce, 

the Stack Filter as a class indicator much like other 
real-valued function classes used for classification. 

Figure 1 provides an example of a Stack Filter classifier 
predicting y = 1 for a mirrored input sample X = 
[3, 1,2, -3, -1, 2]. The monotonicity constraints mean 
that the the output column is always a solid stack of 
ones, and the height corresponds to the Stack Filter 

In addition. monotonicitv also means that: 

In Figure 1 we see a Stack Filter thresholded at zero 
is equivalent to a positive Boolean function applied to 
an abstract middle row between Dth and (D + 1)th 
thresholds. A topic of interest in this paper are learn­
ing algorithms that require the Stack Filter output to 
be further from the decision boundary. This distance 
can be measured in terms of the number of threshold 
levels and is called rank-order For example, 

in Figure 1 the sample has been predicted with rank­
order margin 'I 2. 

x =[ 3, 1, 2,-3, -1, -2]---+ F{x) ---+ 2 

X(6) 0 0 0 0 0 ---+f{·)---+ 0 
xes) 1 0 1 0 0 0 ---+ f{.) ---+ 1 Y=1 
x(41 1 1 1 0 0 0 ---+ f{ .) ---+ 1 
- - - - - --- -- - - -- - - -- - - - - - - - - - - - - - - - - - F(x) =0 
X(3) 1 1 1 0 1 0 ---+ f{e) ---+ 1 

X(2) 1 1 1 0 1 1 ---+ f{.) ---+ 1 y -, 


x(1) 1 1 1 1 1 1 ---+ f{ .) ---+ 


1. Example of rank-order margin. 

4. Loss Functions 

In this section we discuss minimizing a number of loss 
functions for Stack Filters. These loss functions are 
illustrated in 2. 

Loss 

-0-1 Loss 
-_._- Large margin 0-1 
........ hinge loss 


. ·......1 
----...-----+l-------~-,-~

i:
I: yF(x) 

X(1)" ••• X(D- +1("' X(D)~~··X(D+,)---X(2D) 

Figure 2. Loss functions that arc investigated. 

4.1. 0-1 loss 

12 it follows that:From 

y) 

where we redefine the Boolean function output labels 
to simplify notation: f ; {O, I} D ----> {1, Finding 
the Stack Filter which minimizes 0-1 loss, is equiva­
lent to finding the positive boolean function that min­
imizes 0-1 loss. We first consider the related problem 
of finding a Boolean function that minimizes 0-1 loss. 
We define a partially specified Boolean function where 
we assign class labels to the rows of a table 
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that appear in the set thresholded at zero: 
u = x >,:= O. The same row can appear multiple times 
in the training set and so we the unique set 

Q = {q(1),q(2), ... ,q(M)}. A straightforward so­
lution is to implement a classifier and es­
timate the class conditional Drobabilitv for each 

We assign class labels Zi for each qi with the rule: 

if > 0.5 
Zi {_~ (14)

otherwise 

If we restrict the Boolean function to be positive, then 
we must introduce monotonicity constraints. This 
means the plug-in rule of Equation 14 is replaced by 
an integer linear program: 

m'l.n'l.m'l.ze C.Z 

subj Zi ~ Zj when qi ~ qj (15) 
and Zi 

the cost for variable Zi is Ci = 0.5 ­
notation we switched to class 

The constraint matrix is total uni-modular 
which means this program can be solved ex-

a linear program relaxation. This linear pro­
gram was first for Stack Filter 
under mean absolute error (Wendt et al., 1986). 

4.2. large margin 0-1 loss 

We now consider loss functions and define 
margin, ,,(, as the number of thresholds above (and 
below) zero in Figure 1. This leads to the large margin 
0-1 loss: 

L,/(F(x), y) l{yF(xl<x(D+'Y)} (16) 

where to notation: f : 
and we have omitted a cla.'3s depeuuem 

x is thresholdtC'<i which is 
, which means there are less ones. In 

there are more ones. 
as the 0-1 loss 

samples, x is thresholded 
which means 

sam­
are different. 

0000 i 2 

~ 
0010 0001 1=1 

Input 
space 

1110 1101 1011 0111 1=1 

-----~-----1111 1=2 

Figure 3. Lattice diagram of the mirrored input space. 

In Figure 3 the monotonicity constraints of positive 
Boolean functions are illustrated as a lattice where 
links between two Boolean values u and v implies an 
ordering u ;;" v (Ui ;;" Vi, Vi). The mirrored representa­
tion means that the original input space is a subset of 
entries in the middle row of the lattice where [u, ill. As 
rank order margin is samples move higher 
(for class 1) and lower (for class -1) in the lattice, 
which produces numbers of constraints. In 

3 a sample u [1100] moves to u' 
at margin 1, which an additional constraint on 
V= 

mcrcases. the number of boolean func­
the additional constraints de­

creases. The 0-1 loss functions for Stack 
Filters therefore define reduced sets of PBF function 
classes. 

4.3. hinge loss 

Hinge loss is typically defined as (1- F(x)h, but for 
Stack Filters, the loss function is discrete and bounded. 
Furthermore, as shown in Figure 2, the maximum loss 
incurred is 2"( at threshold level (D - "( + 1). This is 
because for class 1, threshold levels 1 ... (D -"() do not 
introduce any additional constraints, i.e., all samples 
at threshold (D "() are below the cla.'ls -1 samples 
at (D "( + 1) and therefore can be trivially satisfied. 
The same reasoning to class -1 samples above 
(D + "(). Given this reduced set of thresholds, we can 
write Stack Filter loss as: 

-y 

y) 

By reordering summations we see 
loss is eauivalent to minimizinJ:!: the sum of 

http:m'l.n'l.m'l.ze
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gin ()..1 loss functions as described in Equation 9. The 
solution has the same form as Equation 15, but with 
more variables (2, times more) and more constraints. 
Note, that this decomposition of hinge loss to a sum 
of misclassification loss functions follows directly from 
the results for Stack Filters under mean abso­
lute error (Wendt et aL, 1986). For classification, this 
decomposition that the Stack Filter 
classifier will have some degree of invariance to the 
rank order margin parameter. This is useful in prac­
tice since we need to choose this parameter for the 
application. Put another way, optimizing Stack Fil­
ters with hinge loss smoothes the error estimate as a 
function of margin, which should help methods like 
cross-validation converge. 

5. Input Expansion 

;::Xpi:tll"lUlI is an essential component of the pro­
posed approach since direct application of Stack Fil­
ters typically leads to significant approximation er­
ror, e.g., in two-dimensions, the Stack Filter func­
tion class has only two functions (maximum and min­
imum). The solution is to map the input space into a 
higher-dimensional feature space where the Stack Fil­

be more usefully applied. This is typically 
an applIcation specific problem, but here we consider 
some purpose expansions that work well with 
Stack Filter learning algorithms. we map each 

independently using a set of constant thresholds: 

XXd [Xd - td(I), Xd - td(2), . .. ,Xd td(ld)] (18) 

The threshold constants can be chosen in a number 
of and data-dependent ways but we assume 
that thresholds form a monotonically increasing set. 
One way to choose thresholds is to sort the (}!-h com­
ponent of all N samples, and choose thresholds as mid­
points between consecutive samples: 

td(j) = (x~) - x~+I»)/2 

where x~) is the lh smallest value in the dth com­
ponent. There are T = N - 1 thresholds for each 

_ A variant of this approach only includes 
thresholds between samples with different class 
in which case the number of thresholds per compo­
nent is smaller and variable. In 4 we provide 
an example of this input expansion in two-dimensions. 

In Figure 4 there are 4 points: {PI (-6,4), P2 
(-2, -8), P.1 = (6,10), P4 = (12, -12)} and there are 3 
data dependent thresholds defined per component tl = 

X2+­

@ 
. , 

__ of ___ .......... ..
................ _..... _­7 -------­

~, 

Xl 
.J ~ "" ""-2 -

, ....... --r------­ .--,-_ .. __ ..... 
~ 

,:® , ...................
-10-------­ ,--~----------""--------, 
® 

-4 w 2 9 

4. Example of Rank I:!;xpa'Osl'Dn. 

{-4,2.9} and t2 = {-10,-2.7}. Point PI = [-6,4] 
would be expanded to [{-2.-8, {14,6,-3}]. 
We then threshold the expanded 
duce a 

ranks. We 
call this representation the rank and for the 
example we would have T' [0,2] where 

T'i = L l{(xx;»O}' 

This representation allows for efficient 
of Stack Filter classifiers. manipulating the trans­
formed set {(r(I), y(I)), ... , (r(N),J/(IV))} we 
effectively manipulate a (D *T)-dimension)tack fnter 
in D-dimensions. 

The final step in the input expansion, is to apply 
the mirror map. We use the same threshold con­
stants for both original and mirrored input compo­
nents, which means the mirror map can be expressed 
asM{r) [rl) ... ,rD,(T1-rd•...• (1'D-rD)]. This 
allows us to assign any class label to any partition with 
a PBF. That is, for any two a and b, it is 
not true that ai ~ bNi, and hence there is always a 
PBF that can assign arbitrary class labels to a and b. 
Note that partitions, r, were described in Section 4.1 
as rows of a look-up-table, ti, but that the two terms 
are equivalent. 
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5.1. Loss functions in feature space 

The rank expansion has a simple geometric interpre­
tation. Misclassification loss minimization is a tiling 
problem where we maximize training 
with I-sized partitions. At zero 
pIes have 
fine non-overlapping partitions i.e., q(i) t q(j) t 
This means that there are no monotonicity constraints 
and a pbf can be found using Equation 14. As we in­
crease partitions grow in size, one threshold at 
a time. Eventually partitions overlap and this means 
that monotonicity constraints must be satisfied using 
Equation 15. 

The order in which components of r(n) are reduced 
increased) is an important choice and a place where 
prior or domain knowledge, can be incor­
porated. For real valued inputs Stack Filters suggest 
an order which depends on the distance between the 

and the threshold constants. In 4 we 
show an example for P1 which we will assume has a 
class label 1. The distances to the various thresholds 
define the order in which components of the rank ex­
pansion are reduced. These distances are numbered in 
order of size in 4. As margin is increased from 
1 through to 6, these distances tell us to subtract 1 
from rd in the following order d = {O, 1, 3, 0, 3, 

For other types of inputs, e.g. categorical or binary, 
the distances to thresholds are less meaningful, and 
often equal. In this case, the Stack Filter approach 
does not which thresholds should be relaxed 
first. In this paper we use a simple heuristic to resolve 
tied distances: we select the threshold which produces 
the smallest number of conflicts. 

6. Learning Algorithms 

The hinge loss classifier can be found via a Linear Pro­
gram of O(2IN) variables. One way to view the opti­
mization is shown on the left in Figure 5. The mono­
tonicity constraints of positive (crosses) and negative 
(circle) samples define local contours of a mar­
gin function and the Linear selects a con­
tinuous path from these contours that maximizes the 
sum of sample The solid gray line in Fig­
ure 5 is a hypothetical solution that misclassifies one 
""''''''"lV<:: sample. The main problem with the hinge 
loss approach is computation. Using the data depen­
dent threshold expansion described in Equation 18, 
I = (N - 1) * D which means we must solve a Lin­
ear Program with O(2DN2) variables. One solution 
is to use the approach taken by Dyadic Decision Trees 
and reduce the number of thresholds, however this can 

increase approximation error. We suggest an alterna­
tive which is related to the hinge loss classifier but 
much easier to compute. 

5. A one-dimensional representation of samples (2ie­
ros and crosses), monotonicity constraints. Hinge loss 
minimi2iation and direct estimation of input parti­
tions (squares) with rank-order distance. 

The main objective in optimizing hinge loss is to 
class labels to input partitions that are poorly repre­
sented in the training data. As we have seen, Stack 
Filter minimizers of hinge loss have attractive prop­
erties for this We now revisit the original 
problem and suggest direct optimization of class la­
bels for the input partitions. On the right of Figure 5 
we show a second simplified version of the optimiza­
tion where we assign class labels to all 
partitions independently. This greatly simplifies the 
optimization. We define the rank-order distance clas­
sifier as a function of l' (the mirrored, rank expansion 
of an input x) as: 

'Y 

1(1') = l{r;;'Tm (n)}­

nEGl m=O nEGOm=O 

(19) 

where rm{n) is a margin modified version of the nth 
training sample. In geometric terms, this classifier is 
defined by counting the number of positive and nega­
tive partitions that overlap a given r. In practice 
this classifier is implemented by constructing a 
rank-order distance matrix, and we add (and subtract) 
the distances from a given point l' to each training sam­
ple. We call the distance function rank-order distance 
and it is defined as the value of margin where the point 
is covert'C! a training sample. In contrast to the Lin­
ear program, this approach is memory-based and ap­
pears similar to Prazen Window or nearest neighbor 
methods. 

The rank-order distance approach assumes we 
only care about the statistics of the thresholded 
loss Stack Filter. By estimating these statistics in­
dependently for each partition we obtain significant 
computational but also reduce approximation 
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error. That is, the partitions used during hinge loss 
are than those estimated with the rank-order 
distance approach. The price one pays is the density 
of solution and the interpretability. The hinge-loss so­
lution typically produces a small number of terms and 
each term directly dictates class labels for par­
titions of the input space. This model is both fast to 
implement and easy to interpret in a decision tree like 
fashion. With the rank-order distance classifier we no 
longer have this simple partitioning of the input space. 
Instead we derive class labels for a given point bv ac­
cumulating many terms. 

7. Synthetic Experiments 

We the relationship between the differ­
ent loss functions and learning algorithms with syn­
thetic experiments. For the first experiment samples 
for two classes are drawn from 4-dimensional symmet­
ric Gaussians. The parameters for the Gaussians are 
J1-1 6,U-l = f and J11 = 1.51,Ul = l.5i. The 
training sample size is fixed at 50 and 
evaluated with 5000 test samples. The number of data 
dependent thresholds is fixed at 8 for each dimension. 
In Figure 6 we show the performance of zero-one, hinge 
loss classifiers as well as the rank-order distance clas­
sifier as a function of margin, averaged over 20 tri­
als. The rank-order distance classifier clearly outper­
forms hinge loss which clearly outperforms zero-one 
loss. The rank-order distance classifier obtained the 
best performance at maximum margin, which we at­
tribute to the limited capacity of the model class de­
fined bv the small number of thresholds. 

O.5l\: =:===il 
, 

OA5~ \ , ,.,
OA 

I\ 
I 

0.35 \. 
\ 

\11 0.3 
UJ \ 

0.25 
.~ "" ., 

0.2 " 
'.~, 

0.15 

2 
Rank-Order Margin 

Figure 6. Test error versus rank-order margin for different 
algorithrus. 

To investigate this further we apply the rank-order 
distance classifier to a multi-modal 2-dimensional xor 
problem where samples are drawn from Gaussian dis­
tributions with equal variance U = 2, and class means 
centered on J1 ±2. We compare 3 classifiers in 
ure 7. RankDistance8 and rankDistance500 are the 
rank-order distance classifier with 8 and 500 thresh­
olds/dimension respectively. We also compare the per­
formance of an SVM rbf classifier as the regulariza­
tion parameter is varied: C = 3, Ie - 2, Ie 
1,1,5,10,50,100,500]. The SVM rbf parameter is set 
at U = 0.1, the best value found with C 1. With 
the increased model capacity, we see that the rank­
order margin parameter behaves as we would expect, 
and that its performance appears competitive with the 
SVM. 

g035 
/ 

IUJ 0.3l 
I 

/ 
I 

0.25 

5 9 
Rank-Order Margin 

Figure 7. Test error of rank-distance classifiers with differ­
ent numbers of thresholds compared to an SVM. 

8. Benchmark Experiments 

The rank-order distance classifier is applied to the 
UCI benchmark datasets described in (Blanchard 
et aI., 2007). Each problem is provided as 100 pre­
partitioned training and test set pairs and the re­
ported percentage is the average test set error over the 
100 trials. During these experiments a simple cross­
validation scheme is used to choose the value of rank­
order margin for each trial independently. of the 

set is used to train the classifier and the re­
lllC1111Ill~ 25% is used as a validation set. We choose 
the value of margin with the minimal average valida­
tion error over 10 folds. Table 1 summarizes results 
reported in (Blanchard et al., 2007) and the results 
obtained with the rank-order distance method (SFC: 
Stack Filter Classifier). In all oroblems we use the 

I 
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Table 1. Classification accuracies on selected benchmarks. 
*Results reproduced from (Blanchard et aI., 2007) 

DATA SET C4.5· aDT" SFC 

BANANA 15.2± 1.3 14.9 ± 1.2 11.03 ± 0.6 
BREAST CANCER 30.8± 4.9 28.7 4.2 29.4 4.2 
DIABETES 27.9± 2.6 26.0 ± 2.3 26.7 ± 1.9 
FLARE-SOLAR 34.5± 2.1 32.6 ± 1.9 34.4 ± 2.2 
THYROID 8.4± 3.5 8.2 ± 3.4 4.9 ± 2.3 
TITANIC 23.0± 1.1 22.5 1.2 22.9 ± 1.9 

training set to define data dependent thresholds as de­
scribed in Section 5. 

In all problems, the SFC approach outperformed C4.5 
and in two of the problems it outperformed ODT. The 
SFC performance is competitive and suggests further 
investigation is warranted. We observed that the SFC 
had difficulty with purely categorical, or binary inputs 
such as the Flare-Solar and Titanic datasets. As dis­
cussed in Section 5 the best way to expand partitions 
for binary, or categorical, inputs is not well defined 
with our approach. Future work will need to address 
this problem and we suggest incorporating techniques 
from the decision tree literature may be useful. For the 
Titanic problem, we also observed that an error rate 
of 22.3 could be obtained by simply memorizing the 
data (zeroOne loss classifier at 0 margin). This error 
rate is in fact lower than the best reported score for 
this problem and indicates how important the choice 
of (or regularization) parameter is for learning 
algorithms. In fact, we observed that better perfor­
mance could often be achieved for several of the prob­
lems, by simply choosing a fixed margin for the SFC. 

9. Discussion 

Stack Filter classifiers and decision tree classifiers pro­
duce similar decision boundaries. The C4.5 split 
are the same data dependent thresholds described in 
Section 5. The two approaches place different con­
straints on how partitions, induced by thresholds, can 
be assigned, but both approaches produce a unique 
rule for each partition. However the rank-order dis­
tance method does not produce a rule based represen­
tation for the Stack Filter classifier (here we ignore the 
trivial rule-based solution which would represent and 
assign every possible partition in the input space). In 
this regard, the rank-order distance method is perhaps 
better compared to a non-rule based classifier such 
as an SVM. The best results obtained on the bench­
mark datasets using this larger class of methods can be 

found in (Blanchard et al., 2007). Although the results 
reported here have higher error than these methods, 
there is :;till much that can be improved in the Stack 
Filter learning algorithms. Specifically, both the input 

and the cross-validation method used to se­
leet the mar(Tin have a lar<re impact on performanceo 	 'b ' , 

an~ ~ave onl.y been briefly addressed in this paper. 
ThIS IS a tOPIC of future work. In summary, we have 
proposed two complementary and related methods for 
designing Stack Filter Classifiers: one that produces a 
decision tree like model and one that produces a prazen 
window like model. This relationship appears unique 

Stack Filter classifiers and could lead to new meth­
ods for maximizing the benefit of both approaches for 
a given application. 
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