
LA-UR- (Yj-ao/;;3 0

Approved for public release;
distribution is unlimited.

Title: I Stack Filter Classifiers

Author(s): I 	Reid Porter,

Don Hush

Intended for: 	 I International Conference on Machine Learning

.~
j LosAlamos

NATIONAL LABORATORY
--EST.1943--­

Los Alamos National Laboratory. an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Govemment purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

for Boolean function classifiers that can

Stack Filter Classifiers

Keywords: stack filters, morphological pattern recognition, classification

Abstract
Just as linear models
mean and weighted average,
statistic models the me­
dian and weighted median. This can
be continued informally to ad­
ditive models in the case of the mean, and
Stack Filters in the case of the median. Both
of these model classes have been extensively
studied for and processing, but
it is surprising to find that for pattern classifi­
cation, their treatment has been significantly
one sided. Generalized additive models are
now a major tool in pattern classification and
many different algorithms have been
developed to fit model parameters to finite
data. However Stack Filters remain largely
confined to signal and processing and
learning algorithms for classification are yet
to be seen. This paper is a step towards Stack
Filter Classifiers and it shows that the ap­
proach is interesting from both a theoretical
and a practical pers}:>ecti

1. Introduction

nonlinear filter for noise
suppression in and processing (Wendt
et al., 1986). Several model classes related to Stack
Filters have been for classification includ­
ing morphological networks (Ritter & Sussner, 1996),
min-max networks (Yang & Maragos, 1995) and order
statistics (Turner & Ghosh, 1999). One of the reasons
why Stack Filters have not been directly applied to
classification problems is because Stack Filter classi­
fiers appear to reduce to a known problem: learning
a Boolean function. In this paper we show that on
closer inspection, Stack Filters for classifi­
cation leads to a different Boolean function learning
problem than has been traditionally considered. The

the International Con­
ference on lVlacmne Do not distribute.

most similar prior work in this respect is the Positive

Boolean Function classifier suggested in (Han, 2002).

Since Stack Filter classifiers reduce to Boolean func­

tion classifiers, they also share many properties with

decision tree including fast and simple im­

plementation, and increased interpretability. Some of

the difficulties encountered with these types of classi­

fiers include high approximation error and combina­

torial learnin!! oroblems. Several . ,

. to address these diffi­
culties in different ways. Traditionally tree models are

built with a top-down method, and then

to control (Quinlan, 1993). Alternatively

models can be construck'<i incrementally where over­

fitting is controlled by step-wise approximation of a

regularized loss function (Y Freund, 1997). More

recently theoretical results and increased computing

resources have enabled the development of optimal

learning algorithms over the class of dyadic decision

trees (manchard et aL, 2007). These methods have

been applied successful to practical problems and pro­

vide an exact minimization of a complexity penalized

loss function.

In this paper we propose an

the last in that we suggest a ~

ing the problem as a Stack Filter, we arrive at a new
and unique method to control over-fitting.

2. Main Results

To present our main results we define some basic nota­
tion. We consider two-class classification, where we are
given a set ((x(l), y(l)), ... , (x(N), y(N))} of
N points, x E , with labels, y E {-I, I}, drawn
from a distribution Px y. The task is to find a model
(or function) F : jRD -'> jR that has small error
e{F)). Classification perfor­

excess error of the clas­
to the Bayes optimal classifier

and can be viewed as a combination
of approximation estimation errors

Stack Filter Classifiers

ties are related to bias and variance):

-e* inf e*)
FrEF +

(1)

The first term is estimation error and is due to the
fact that we only have a finite number of examples to
select the best model from the model class:F. The
second term is approximation error and is due to the
fact that the Bayes classifier is not represented in the
model class. These two errors have conflicting needs:
a common way to reduce approximation error is to
increase the capacity of the model class but this typi­

increases the estimation error. The learning algo­
rithm must balance these needs and the most common
,pproach is to choose a function F that minimizes a

set error:

t E arg min e(F, L) (2)
FEF

A 1 N

F argmin N ~
 (3)

FEF L.....
i=l

where L: -+ lR is a loss function. The choice of
loss function affects both the estimation and approx­
imation errors of t and must be carefully chosen. A
popular approach is to define a very rich model class
and then parameterize the loss function in a way that
allows the tradeoff to be easily tuned to the applica­
tion: Ly(F(x), y), At one extreme of;, the loss func­
tion would define a classifier with zero approximation
error and at the other extreme, a classifier with zero
estimation error. We would also like both errors to
decrease as N increases. It would also be desirable if
the value of ; was well behaved, or in SOme way easy
to tune e.g. it is a smooth function of the
excess error, and/or it is constrained to a small, finite
number of values.

Support vector machines provide one solution to this
problem for Reproducing Kernel Hilbert space model

and in this case the loss function includes a
parameter. In this paper we suggest a

loss function and calibration for Stack Filter
classifiers with several desirable Dfooerties. In
ular we show that:

1. For misclassification loss:

L(F(x), y) = l{F(x)r'Y} (4)

a Stack Filter minimizer can be found via a linear pro­
gram of O(N) variables.

2. For large-margin misclassification loss:

L"'I(F(x), y) = l{yF(x)<"'I} (5)

a Stack Filter minimizer

E arg min e(F,Lr)
FEF

is equivalent to minimizing misclassification loss with
a Stack Filter from a restricted function class:

E arg min e(F,L) (7)
FEF,,!

~ ••• <:;: :Fl ~:F. This parameter
is monotonically related to the size of the Stack Filter
function class and is also discrete and bounded.

3. For large margin hinge loss

L~(F(x), y) = (;- yF(x)h (8)

a Stack Filter mlllHlllzer also minimizes the sum of
misclassification loss functions:

"'I

E arg min ~
FEF L.....

"'1'=-"'1

This result implies that large-margin hinge loss is a
good choice for optimizing stack filter classifiers. It has
one parameter, which determines the size of the model
class considered during optimization, and it minimizes
the on that parameter, which makes it eas­
ier to tune, The size of the model clai,s although

can be made arbitrarily and minimization
over :F is exact with a linear program of O(2;D) vari­
ables.

Currently the main limitation to minimizing Stack Fil­
ters under hinge loss is the size of the linear program.
In Section 6 we suggest a related solution method,
which can scale to practical problem sizes. This solu­
tion method sacrifices some of the advantages associ­
ated with the hinge loss solution such as interpret

efficiency of implementation. However the ap­
on practic

lems and suggests several new avenues of research.

3. Stack Filters

Stack Filters are defined using threshold decomposi­
tion and rnonotonicity constraints. Given a real valued

Stack Filter Classifiers

input vector x [Xl, X2, ••• ,xDJ we define a threshold­
ing function U = X ~ c that prod uces a binary vector
with components Ui = l{x;;;'c}' We then define a Stack
Index Filter. Sf; JRD ----> {1, ... , D} as:

D

=Lf(,r;~
d=1

where X(db is the dth smallest component of x and
f ; {O, 1} ----> {O, 1} is a positive Boolean function
(PBF). A Boolean function is positive (or monotone,
non-decreasing) if it satisfies the stacking constraint
that Ui ;;;, Vi, Vi implies f(u) ;;;, f(v). A Boolean
function that is defined using 'and' and 'or', but no

satisfies this constraint. A Stack Filter,
----> JR, is related to a Stack Index Filter

the relationship;

There is a one-to-one correspondence between the class
of positive Boolean functions, the class of Stack Index
Filters and the class of Stack Filters, and we use the
terms interchangeably.

3.1. Stack Filter Classifiers

The first step in applying Stack Filters to classifica­

reference point at °and means we can use the sign of

problems is to extend the input soace using the
Lor-map M:

Paredes & Arce,

the Stack Filter as a class indicator much like other
real-valued function classes used for classification.

Figure 1 provides an example of a Stack Filter classifier
predicting y = 1 for a mirrored input sample X =
[3, 1,2, -3, -1, 2]. The monotonicity constraints mean
that the the output column is always a solid stack of
ones, and the height corresponds to the Stack Filter

In addition. monotonicitv also means that:

In Figure 1 we see a Stack Filter thresholded at zero
is equivalent to a positive Boolean function applied to
an abstract middle row between Dth and (D + 1)th
thresholds. A topic of interest in this paper are learn­
ing algorithms that require the Stack Filter output to
be further from the decision boundary. This distance
can be measured in terms of the number of threshold
levels and is called rank-order For example,

in Figure 1 the sample has been predicted with rank­
order margin 'I 2.

x =[3, 1, 2,-3, -1, -2]---+ F{x) ---+ 2

X(6) 0 0 0 0 0 ---+f{·)---+ 0
xes) 1 0 1 0 0 0 ---+ f{.) ---+ 1 Y=1
x(41 1 1 1 0 0 0 ---+ f{ .) ---+ 1
- - - - - --- -- - - -- - - -- - - - - - - - - - - - - - - - - - F(x) =0
X(3) 1 1 1 0 1 0 ---+ f{e) ---+ 1

X(2) 1 1 1 0 1 1 ---+ f{.) ---+ 1 y -,

x(1) 1 1 1 1 1 1 ---+ f{ .) ---+

1. Example of rank-order margin.

4. Loss Functions

In this section we discuss minimizing a number of loss
functions for Stack Filters. These loss functions are
illustrated in 2.

Loss

-0-1 Loss
-_._- Large margin 0-1
........ hinge loss

. ·......1
----...-----+l-------~-,-~

i:
I: yF(x)

X(1)" ••• X(D- +1("' X(D)~~··X(D+,)---X(2D)

Figure 2. Loss functions that arc investigated.

4.1. 0-1 loss

12 it follows that:From

y)

where we redefine the Boolean function output labels
to simplify notation: f ; {O, I} D ----> {1, Finding
the Stack Filter which minimizes 0-1 loss, is equiva­
lent to finding the positive boolean function that min­
imizes 0-1 loss. We first consider the related problem
of finding a Boolean function that minimizes 0-1 loss.
We define a partially specified Boolean function where
we assign class labels to the rows of a table

Stack Filter Classifiers

that appear in the set thresholded at zero:
u = x >,:= O. The same row can appear multiple times
in the training set and so we the unique set

Q = {q(1),q(2), ... ,q(M)}. A straightforward so­
lution is to implement a classifier and es­
timate the class conditional Drobabilitv for each

We assign class labels Zi for each qi with the rule:

if > 0.5
Zi {_~ (14)

otherwise

If we restrict the Boolean function to be positive, then
we must introduce monotonicity constraints. This
means the plug-in rule of Equation 14 is replaced by
an integer linear program:

m'l.n'l.m'l.ze C.Z

subj Zi ~ Zj when qi ~ qj (15)
and Zi

the cost for variable Zi is Ci = 0.5 ­
notation we switched to class

The constraint matrix is total uni-modular
which means this program can be solved ex-

a linear program relaxation. This linear pro­
gram was first for Stack Filter
under mean absolute error (Wendt et al., 1986).

4.2. large margin 0-1 loss

We now consider loss functions and define
margin, ,,(, as the number of thresholds above (and
below) zero in Figure 1. This leads to the large margin
0-1 loss:

L,/(F(x), y) l{yF(xl<x(D+'Y)} (16)

where to notation: f :
and we have omitted a cla.'3s depeuuem

x is thresholdtC'<i which is
, which means there are less ones. In

there are more ones.
as the 0-1 loss

samples, x is thresholded
which means

sam­
are different.

0000 i 2

~
0010 0001 1=1

Input
space

1110 1101 1011 0111 1=1

-----~-----1111 1=2

Figure 3. Lattice diagram of the mirrored input space.

In Figure 3 the monotonicity constraints of positive
Boolean functions are illustrated as a lattice where
links between two Boolean values u and v implies an
ordering u ;;" v (Ui ;;" Vi, Vi). The mirrored representa­
tion means that the original input space is a subset of
entries in the middle row of the lattice where [u, ill. As
rank order margin is samples move higher
(for class 1) and lower (for class -1) in the lattice,
which produces numbers of constraints. In

3 a sample u [1100] moves to u'
at margin 1, which an additional constraint on
V=

mcrcases. the number of boolean func­
the additional constraints de­

creases. The 0-1 loss functions for Stack
Filters therefore define reduced sets of PBF function
classes.

4.3. hinge loss

Hinge loss is typically defined as (1- F(x)h, but for
Stack Filters, the loss function is discrete and bounded.
Furthermore, as shown in Figure 2, the maximum loss
incurred is 2"(at threshold level (D - "(+ 1). This is
because for class 1, threshold levels 1 ... (D -"() do not
introduce any additional constraints, i.e., all samples
at threshold (D "() are below the cla.'ls -1 samples
at (D "(+ 1) and therefore can be trivially satisfied.
The same reasoning to class -1 samples above
(D + "(). Given this reduced set of thresholds, we can
write Stack Filter loss as:

-y

y)

By reordering summations we see
loss is eauivalent to minimizinJ:!: the sum of

http:m'l.n'l.m'l.ze

Stack Filter Classifiers

gin ()..1 loss functions as described in Equation 9. The
solution has the same form as Equation 15, but with
more variables (2, times more) and more constraints.
Note, that this decomposition of hinge loss to a sum
of misclassification loss functions follows directly from
the results for Stack Filters under mean abso­
lute error (Wendt et aL, 1986). For classification, this
decomposition that the Stack Filter
classifier will have some degree of invariance to the
rank order margin parameter. This is useful in prac­
tice since we need to choose this parameter for the
application. Put another way, optimizing Stack Fil­
ters with hinge loss smoothes the error estimate as a
function of margin, which should help methods like
cross-validation converge.

5. Input Expansion

;::Xpi:tll"lUlI is an essential component of the pro­
posed approach since direct application of Stack Fil­
ters typically leads to significant approximation er­
ror, e.g., in two-dimensions, the Stack Filter func­
tion class has only two functions (maximum and min­
imum). The solution is to map the input space into a
higher-dimensional feature space where the Stack Fil­

be more usefully applied. This is typically
an applIcation specific problem, but here we consider
some purpose expansions that work well with
Stack Filter learning algorithms. we map each

independently using a set of constant thresholds:

XXd [Xd - td(I), Xd - td(2), . .. ,Xd td(ld)] (18)

The threshold constants can be chosen in a number
of and data-dependent ways but we assume
that thresholds form a monotonically increasing set.
One way to choose thresholds is to sort the (}!-h com­
ponent of all N samples, and choose thresholds as mid­
points between consecutive samples:

td(j) = (x~) - x~+I»)/2

where x~) is the lh smallest value in the dth com­
ponent. There are T = N - 1 thresholds for each

_ A variant of this approach only includes
thresholds between samples with different class
in which case the number of thresholds per compo­
nent is smaller and variable. In 4 we provide
an example of this input expansion in two-dimensions.

In Figure 4 there are 4 points: {PI (-6,4), P2
(-2, -8), P.1 = (6,10), P4 = (12, -12)} and there are 3
data dependent thresholds defined per component tl =

X2+­

@
. ,

__ of ___
................ _..... _­7 -------­

~,

Xl
.J ~ "" ""-2 -

, --r------­ .--,-_ .. __
~

,:® ,
-10-------­ ,--~----------""--------,
®

-4 w 2 9

4. Example of Rank I:!;xpa'Osl'Dn.

{-4,2.9} and t2 = {-10,-2.7}. Point PI = [-6,4]
would be expanded to [{-2.-8, {14,6,-3}].
We then threshold the expanded
duce a

ranks. We
call this representation the rank and for the
example we would have T' [0,2] where

T'i = L l{(xx;»O}'

This representation allows for efficient
of Stack Filter classifiers. manipulating the trans­
formed set {(r(I), y(I)), ... , (r(N),J/(IV))} we
effectively manipulate a (D *T)-dimension)tack fnter
in D-dimensions.

The final step in the input expansion, is to apply
the mirror map. We use the same threshold con­
stants for both original and mirrored input compo­
nents, which means the mirror map can be expressed
asM{r) [rl) ... ,rD,(T1-rd•...• (1'D-rD)]. This
allows us to assign any class label to any partition with
a PBF. That is, for any two a and b, it is
not true that ai ~ bNi, and hence there is always a
PBF that can assign arbitrary class labels to a and b.
Note that partitions, r, were described in Section 4.1
as rows of a look-up-table, ti, but that the two terms
are equivalent.

Stack Filter Classifiers

5.1. Loss functions in feature space

The rank expansion has a simple geometric interpre­
tation. Misclassification loss minimization is a tiling
problem where we maximize training
with I-sized partitions. At zero
pIes have
fine non-overlapping partitions i.e., q(i) t q(j) t
This means that there are no monotonicity constraints
and a pbf can be found using Equation 14. As we in­
crease partitions grow in size, one threshold at
a time. Eventually partitions overlap and this means
that monotonicity constraints must be satisfied using
Equation 15.

The order in which components of r(n) are reduced
increased) is an important choice and a place where
prior or domain knowledge, can be incor­
porated. For real valued inputs Stack Filters suggest
an order which depends on the distance between the

and the threshold constants. In 4 we
show an example for P1 which we will assume has a
class label 1. The distances to the various thresholds
define the order in which components of the rank ex­
pansion are reduced. These distances are numbered in
order of size in 4. As margin is increased from
1 through to 6, these distances tell us to subtract 1
from rd in the following order d = {O, 1, 3, 0, 3,

For other types of inputs, e.g. categorical or binary,
the distances to thresholds are less meaningful, and
often equal. In this case, the Stack Filter approach
does not which thresholds should be relaxed
first. In this paper we use a simple heuristic to resolve
tied distances: we select the threshold which produces
the smallest number of conflicts.

6. Learning Algorithms

The hinge loss classifier can be found via a Linear Pro­
gram of O(2IN) variables. One way to view the opti­
mization is shown on the left in Figure 5. The mono­
tonicity constraints of positive (crosses) and negative
(circle) samples define local contours of a mar­
gin function and the Linear selects a con­
tinuous path from these contours that maximizes the
sum of sample The solid gray line in Fig­
ure 5 is a hypothetical solution that misclassifies one
""''''''"lV<:: sample. The main problem with the hinge
loss approach is computation. Using the data depen­
dent threshold expansion described in Equation 18,
I = (N - 1) * D which means we must solve a Lin­
ear Program with O(2DN2) variables. One solution
is to use the approach taken by Dyadic Decision Trees
and reduce the number of thresholds, however this can

increase approximation error. We suggest an alterna­
tive which is related to the hinge loss classifier but
much easier to compute.

5. A one-dimensional representation of samples (2ie­
ros and crosses), monotonicity constraints. Hinge loss
minimi2iation and direct estimation of input parti­
tions (squares) with rank-order distance.

The main objective in optimizing hinge loss is to
class labels to input partitions that are poorly repre­
sented in the training data. As we have seen, Stack
Filter minimizers of hinge loss have attractive prop­
erties for this We now revisit the original
problem and suggest direct optimization of class la­
bels for the input partitions. On the right of Figure 5
we show a second simplified version of the optimiza­
tion where we assign class labels to all
partitions independently. This greatly simplifies the
optimization. We define the rank-order distance clas­
sifier as a function of l' (the mirrored, rank expansion
of an input x) as:

'Y

1(1') = l{r;;'Tm (n)}­

nEGl m=O nEGOm=O

(19)

where rm{n) is a margin modified version of the nth
training sample. In geometric terms, this classifier is
defined by counting the number of positive and nega­
tive partitions that overlap a given r. In practice
this classifier is implemented by constructing a
rank-order distance matrix, and we add (and subtract)
the distances from a given point l' to each training sam­
ple. We call the distance function rank-order distance
and it is defined as the value of margin where the point
is covert'C! a training sample. In contrast to the Lin­
ear program, this approach is memory-based and ap­
pears similar to Prazen Window or nearest neighbor
methods.

The rank-order distance approach assumes we
only care about the statistics of the thresholded
loss Stack Filter. By estimating these statistics in­
dependently for each partition we obtain significant
computational but also reduce approximation

Stack Filter Classifiers

error. That is, the partitions used during hinge loss
are than those estimated with the rank-order
distance approach. The price one pays is the density
of solution and the interpretability. The hinge-loss so­
lution typically produces a small number of terms and
each term directly dictates class labels for par­
titions of the input space. This model is both fast to
implement and easy to interpret in a decision tree like
fashion. With the rank-order distance classifier we no
longer have this simple partitioning of the input space.
Instead we derive class labels for a given point bv ac­
cumulating many terms.

7. Synthetic Experiments

We the relationship between the differ­
ent loss functions and learning algorithms with syn­
thetic experiments. For the first experiment samples
for two classes are drawn from 4-dimensional symmet­
ric Gaussians. The parameters for the Gaussians are
J1-1 6,U-l = f and J11 = 1.51,Ul = l.5i. The
training sample size is fixed at 50 and
evaluated with 5000 test samples. The number of data
dependent thresholds is fixed at 8 for each dimension.
In Figure 6 we show the performance of zero-one, hinge
loss classifiers as well as the rank-order distance clas­
sifier as a function of margin, averaged over 20 tri­
als. The rank-order distance classifier clearly outper­
forms hinge loss which clearly outperforms zero-one
loss. The rank-order distance classifier obtained the
best performance at maximum margin, which we at­
tribute to the limited capacity of the model class de­
fined bv the small number of thresholds.

O.5l\: =:===il
,

OA5~ \ , ,.,
OA

I\
I

0.35 \.
\

\11 0.3
UJ \

0.25
.~ "" .,

0.2 "
'.~,

0.15

2
Rank-Order Margin

Figure 6. Test error versus rank-order margin for different
algorithrus.

To investigate this further we apply the rank-order
distance classifier to a multi-modal 2-dimensional xor
problem where samples are drawn from Gaussian dis­
tributions with equal variance U = 2, and class means
centered on J1 ±2. We compare 3 classifiers in
ure 7. RankDistance8 and rankDistance500 are the
rank-order distance classifier with 8 and 500 thresh­
olds/dimension respectively. We also compare the per­
formance of an SVM rbf classifier as the regulariza­
tion parameter is varied: C = 3, Ie - 2, Ie
1,1,5,10,50,100,500]. The SVM rbf parameter is set
at U = 0.1, the best value found with C 1. With
the increased model capacity, we see that the rank­
order margin parameter behaves as we would expect,
and that its performance appears competitive with the
SVM.

g035
/

IUJ 0.3l
I

/
I

0.25

5 9
Rank-Order Margin

Figure 7. Test error of rank-distance classifiers with differ­
ent numbers of thresholds compared to an SVM.

8. Benchmark Experiments

The rank-order distance classifier is applied to the
UCI benchmark datasets described in (Blanchard
et aI., 2007). Each problem is provided as 100 pre­
partitioned training and test set pairs and the re­
ported percentage is the average test set error over the
100 trials. During these experiments a simple cross­
validation scheme is used to choose the value of rank­
order margin for each trial independently. of the

set is used to train the classifier and the re­
lllC1111Ill~ 25% is used as a validation set. We choose
the value of margin with the minimal average valida­
tion error over 10 folds. Table 1 summarizes results
reported in (Blanchard et al., 2007) and the results
obtained with the rank-order distance method (SFC:
Stack Filter Classifier). In all oroblems we use the

I

Stack Filter Classifiers

Table 1. Classification accuracies on selected benchmarks.
*Results reproduced from (Blanchard et aI., 2007)

DATA SET C4.5· aDT" SFC

BANANA 15.2± 1.3 14.9 ± 1.2 11.03 ± 0.6
BREAST CANCER 30.8± 4.9 28.7 4.2 29.4 4.2
DIABETES 27.9± 2.6 26.0 ± 2.3 26.7 ± 1.9
FLARE-SOLAR 34.5± 2.1 32.6 ± 1.9 34.4 ± 2.2
THYROID 8.4± 3.5 8.2 ± 3.4 4.9 ± 2.3
TITANIC 23.0± 1.1 22.5 1.2 22.9 ± 1.9

training set to define data dependent thresholds as de­
scribed in Section 5.

In all problems, the SFC approach outperformed C4.5
and in two of the problems it outperformed ODT. The
SFC performance is competitive and suggests further
investigation is warranted. We observed that the SFC
had difficulty with purely categorical, or binary inputs
such as the Flare-Solar and Titanic datasets. As dis­
cussed in Section 5 the best way to expand partitions
for binary, or categorical, inputs is not well defined
with our approach. Future work will need to address
this problem and we suggest incorporating techniques
from the decision tree literature may be useful. For the
Titanic problem, we also observed that an error rate
of 22.3 could be obtained by simply memorizing the
data (zeroOne loss classifier at 0 margin). This error
rate is in fact lower than the best reported score for
this problem and indicates how important the choice
of (or regularization) parameter is for learning
algorithms. In fact, we observed that better perfor­
mance could often be achieved for several of the prob­
lems, by simply choosing a fixed margin for the SFC.

9. Discussion

Stack Filter classifiers and decision tree classifiers pro­
duce similar decision boundaries. The C4.5 split
are the same data dependent thresholds described in
Section 5. The two approaches place different con­
straints on how partitions, induced by thresholds, can
be assigned, but both approaches produce a unique
rule for each partition. However the rank-order dis­
tance method does not produce a rule based represen­
tation for the Stack Filter classifier (here we ignore the
trivial rule-based solution which would represent and
assign every possible partition in the input space). In
this regard, the rank-order distance method is perhaps
better compared to a non-rule based classifier such
as an SVM. The best results obtained on the bench­
mark datasets using this larger class of methods can be

found in (Blanchard et al., 2007). Although the results
reported here have higher error than these methods,
there is :;till much that can be improved in the Stack
Filter learning algorithms. Specifically, both the input

and the cross-validation method used to se­
leet the mar(Tin have a lar<re impact on performanceo 	 'b ' ,

an~ ~ave onl.y been briefly addressed in this paper.
ThIS IS a tOPIC of future work. In summary, we have
proposed two complementary and related methods for
designing Stack Filter Classifiers: one that produces a
decision tree like model and one that produces a prazen
window like model. This relationship appears unique

Stack Filter classifiers and could lead to new meth­
ods for maximizing the benefit of both approaches for
a given application.

References

Blanchard, G., Schafer, c., Rozenholc, Y., & Muller,
K.-R. (2007). Optimal dyadic decision trees. Ma­
chine Learning, 66, 709-717.

Han, c.-C. (2002). A supervised classification scheme
using positive boolean function. 16th International
Conference on Pattern Recognition (ICPR '02), 2,
1OCH03.

Paredes, J. & Arce, G. R. (2001). Optimization of
stack filters based on mirrored threshold decompo­
sition. IEEE Transactions on Signal Processing,
1179-1188.

Quinlan, J. R. (1993). C4.5: Programs for machine
learning. San Mateo: Morgan Kaufmann.

Ritter, G. X., & Sussner, P. (1996). An introduction to
morphological neural networks. 13th International
Conference on Pattern Recognition, 4, 709-717.

Turner, K., & Ghosh, J. (1999). Linear and order
statistics combiners for pattern classification. Com­

Artificial Neural Nets., 127-162.

Wendt, P. D., Coyle, E. J., & Gallagher, N. C.
(1986). Stack filters. IEEE Transaclions on Acous­
tics, Speech, and Signal Processing, 84, 898-910.

Y. Freund, R. 	E. S. (1997). A decision-theoretic gen­
eralization of on-line learning and an application to
boosting. Journal of Computer and System Sci­
ences, 119-139.

Yang, & Maragos, P. (1995). Min-max classifiers:
Learnability, design and application. Pattern Recog­
nition, 28, 879-899.

