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CHAPTER 1

INTRODUCTION

Although an admirer of Boltzmann, Einstein never accepted Boltzmann principle

S = klogW and argued that the statistics of the system (W) must follow from its

dynamics. Therefore, a thermostatistical framework cannot be postulated a priori [1, 2].

The recent progress in nonequilibrium statistical physics justi�es Einstein's view, since

we now have many di�erent statistics occurring in nature depending on the underlying


uctuations, the structure of the phase space and di�erent non-equilibrium conditions.

For example, we now know that Dirac delta type of 
uctuations in the intensive variable

� = 1
T

where T is temperature, give rise to Boltzmann statistics. However, a di�erent

type of 
uctuation provides us with an even richer variety of statistics completely di�erent

than the Boltzmann-Gibbs (BG) statistics [3]. Therefore, it is imperative to understand

under what conditions BG statistics holds and must be replaced by a new statistics.

The subject of this dissertation is the emergence of a new formalism when we cannot

rely on the Boltzmann formulation (or Gibbs for that matter). These cases are not

�ctitious and have been reported for some time [4-10]. In fact, Boltzmann himself had

mentioned the limitations of his own theory, stating that it would not be valid for long-

range forces. The examples for which Boltzmann entropy fails are many but some of them

includes turbulence [4, 5], electron-positron annihilation [6], kinetic theory [7], quantum

chaos [8], quantum entanglement [9], anomalous di�usion [10]. Almost all these examples

have one thing in common. They have meta-stable equilibrium distributions of the inverse

power law form, not exponential as Boltzmann suggested. In this sense, we need a new

entropy expression, which will lead to inverse power law distributions as the stationary

equilibrium distribution.

In this dissertation, I will mainly consider two such related entropy expressions: Tsallis

entropy [11] and incomplete statistics (IS) entropy [12], although there are many other
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candidates [13, 14]. Both Tsallis and IS entropy break the additivity postulate which is

satis�ed by Boltzmann entropy. On the other hand, since these entropies are expected to

work even for long-range interactions, this is not surprising. In fact, L. Tisza [15] remarks

that the additivity postulate cannot be inferred from general principles and must be taken

as an approximation for cases with intramolecular forces of short-range character. The

main di�erence between the two is the degree of our knowledge of the system, since the

Tsallis entropy is based on the assumption that we can know all the microstates whereas

the IS entropy is not.

Much is known about these entropies and many developments have been made. How-

ever, a formalism based on these two entropies for open systems is missing so far. My

primary contribution is to give such a formalism within the context of Tsallis and IS en-

tropies. These results are reported in Chapters 5 and 6. We see that a new concept called

\renormalized entropy" is necessary in order to generalize these two entropies to open sys-

tems. Moreover, this formalism will also allow us to have a criterion for self-organization

in nonadditive open systems.

Another relevant issue is raised in Chapter 7 and is further elaborated in Chapter 8.

We introduce Boltzmann's method of orthodes in Chapter 7. Boltzmann's method allows

one to base equilibrium thermostatistics without the need to use probabilistic arguments.

Moreover, the results obtained from this method can be applied to physical systems of

any size. In other words, one does not need to invoke the thermodynamic limit. This

aspect is important since recently we can deal with small systems possessing few degrees

of freedom. We would still like to investigate them in terms of their temperature and

other thermodynamic functions. Is this possible? The answer is positive and its roots can

be traced back to Boltzmann.

Chapter 8 is on the application of the method of orthodes to the Tsallis ensemble. I

show that as far as heat theorem is concerned, the Tsallis ensemble is on equal footing with

the microcanonical, canonical and grand canonical ensembles. Surprisingly, the associated

entropy turns out to be the R�enyi entropy [13].

The conclusions are given in Chapter 9.
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CHAPTER 2

NONADDITIVE TSALLIS ENTROPY

2.1. General Formalism

In order to generalize Boltzmann-Gibbs entropy (BG), C. Tsallis [11, 16, 17] proposed

a one-parameter generalization of BG entropy i.e., the Tsallis entropy in 1988. The Tsallis

entropy can be written as

(2.1) Sq(p) = k

∑W
i pqi �

∑W
i pi

1� q

where pi is the probability of the system in the ith microstate, and W is the total number

of con�gurations of the system. For the cases with q < 0, one must be cautious not

to include the probability assignments, which will results in divergences in the entropy

expression above. The constant k is the Boltzmann constant that will be taken as unity

in most of this dissertation. The parameter q is a real number called the entropic index

or nonadditivity parameter.

The parameter q is called the nonadditivity parameter because the entropy of two

independent systems A and B where pi j(A+B)=pi(A)pj(B) is

(2.2) Sq(A + B)=k = [Sq(A)] + [Sq(B)] + (1� q)[Sq(A)][Sq(B)]:

This equation shows a drastic departure from the BG entropy since the BG entropy is

completely additive in the sense described above. The possibilities q < 1, q = 1 and q > 1

are called superadditive, additive and subadditive, respectively. The naming of these cases

can be easily understood if we note that pqi > pi for q < 1 (i.e., the superadditive case),

because the probability values are between zero and one. In this sense, Tsallis entropy

presents us with a means of emphasizing the rare and frequent events. It is a general
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feature of Tsallis entropy that it (and all associated thermodynamic functions) becomes

BG entropy in the q ! 1 limit.

Another general structure underlying the de�nition of the Tsallis entropy is given in

terms of deformed exponentials. In this framework, one de�nes a q-deformed logarithm

(2.3) lnq(x) =
x1�q � 1

1� q
:

The q-exponential is de�ned as

(2.4) expq(x) = (1 + (1� q)x)
1

1�q :

These de�nitions become the ordinary logarithm and exponential in the q ! 1 limit.

One can now rewrite the Tsallis entropy in terms of q-deformed logarithm as

(2.5) Sq =
∑
i

pi lnq(1=pi):

The Tsallis entropy was originally maximized by

(2.6) �(Sq � �

w∑
i=1

pi � �

w∑
i=1

pi"i) = 0

where the Lagrange multipliers are denoted by � and �. The energy of the ith microstate

is denoted by "i . This maximization resulted in the stationary equilibrium distribution

(2.7) p
(1)
i =

[1� (q � 1)�"i ]
1=(q�1)

Z
(1)
q

where Z
(1)
q =

∑
j

[1 � (q � 1)�"j ]
1=(q�1) is the partition function. The superscript (1)

indicates that the above maximization has been carried out with respect to the internal

energy constraint
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(2.8)

W∑
i

pi"i = U(1)
q :

However, this choice of constraints did not solve the problems regarding the L�evy

distribution since second moment would still diverge under the maximization [18]. Since

one expected to obtain a more general framework from Tsallis entropy that includes L�evy

distribution as a subset, a new expression for the internal energy constraint was proposed,

(2.9)

W∑
i

pqi "i = U(2)
q :

The maximization of the Tsallis entropy subject to this internal energy constraint now

results in the following stationary equilibrium distribution

(2.10) p
(2)
i =

[1� (1� q)�"i ]
1=(1�q)

Z
(2)
q

where the denominator is the associated partition function Z
(2)
q =

∑
j

[1�(1�q)�"j ]
1=(1�q).

This equilibrium distribution preserves the Legendre structure regardless of q. The inverse

temperature can be obtained as

(2.11) � =
@Sq

@U
(2)
q

:

The internal energy function and the partition function with this second constraint be-

comes

(2.12) U(2)
q = �@ lnq Z

(2)
q

@�
:

The free energy is de�ned as

(2.13) F (2)
q = U(2)

q � 1

�
Sq = �1

�
lnq Z

(2)
q
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and the heat capacity is given by the following equation

(2.14) C(2)
q =

@U
(2)
q

@T
:

This choice of constraint, i.e. the second constraint in the nonadditive formalism enabled

one to to obtain the L�evy distribution as a result of the maximization of Tsallis entropy.

However, it soon faced three severe objections. First, the equilibrium distribution obtained

from the maximization of the Tsallis entropy subject to the second constraint is not

invariant under uniform translation of "i . In this sense, the thermodynamical results

depend on the choice of the origin of the energies. Second is the need to use expectation

value of the form
∑W

i pqi Oi =< Oq >
(2) for any observable O. However, this expectation

value is not normalized and moreover yields

(2.15) < 1 >(2) 6= 1:

Third, the use of the second constraint is related to the violation of macroscopic energy

conservation. In order to see this, we assume two systems A and B satisfy pABij = pAi p
B
j

such that "ABij = "Ai + "Bj . Now, it can be shown that

(2.16) U(2)
q (A + B) = U(2)

q (A) + U(2)
q (B) + (1� q)[U(2)

q (A)Sq(B) + U(2)
q (B)Sq(A)];

which is di�erent than U
(2)
q (A)+U

(2)
q (B). The above equation shows that the energy is not

conserved macroscopically for q 6= 1. This violates the �rst principle of thermodynamics.

A question might be asked at this point: why can we not accept the violation of the �rst

law since we have embraced the nonadditivity of the entropy? However, the entropy is

inherently an informational de�nition whereas the �rst law is a mechanical law. In other

words, we do not accept any change at the level of dynamics although we adopt a di�erent

nonadditive entropy de�nition.
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In order to overcome all these di�culties, a third choice of constraints has been

adopted in the nonadditive formalism [19]. This third choice is called escort distribution

and written as

(2.17) U(3)
q =

∑w
i=1 p

q
i �i∑w

i=1 p
q
i

:

This constraint is similar to the second constraint but it is normalized. The maximization

of the Tsallis entropy with the above constraint yields the following stationary equilibrium

distribution

(2.18) p
(3)
i =

[1� (1� q)�("i � U
(3)
q =

∑w
j=1(p

(3)
j )q]1=(1�q)

Z
(3)
q

where the partition function Z
(3)
q is given by

(2.19) Z(3)
q =

w∑
i=1

[1� (1� q)�("i � U(3)
q =

w∑
j=1

(p
(3)
j )q]1=(1�q):

This choice too respects the Legendre structure and the inverse temperature is

(2.20) � =
@Sq

@U
(3)
q

:

The internal energy function and the partition function with the third constraint becomes

(2.21) U(3)
q = �@ lnq Z

(3)
q

@�
:

The free energy is de�ned as

(2.22) F (3)
q = U(3)

q � 1

�
Sq = �1

�
lnq Z

(3)
q

and the heat capacity is given by the following equation

7



(2.23) C(3)
q =

@U
(3)
q

@T
:

In addition to the preservation of the Legendre structure, the third constraint also solves

the previous di�culties. First, if we add a constant "0 to all micro-energies "i , U
(3)
q

becomes U
(3)
q + "0. This in turn leaves invariant all the di�erences "i � U

(3)
q .Therefore,

the probability distribution p
(3)
i is invariant under uniform translation of the energy "i .

Second, we see that the expectation value of an observable is now de�ned as

(2.24) < Oq >
(3)=

∑w
i=1 p

q
i Oi∑w

j=1 p
q
j

:

This preserves the norm of 1 for for every q,

(2.25) < 1 >(3)=

∑w
i=1 p

q
i∑w

j=1 p
q
j

= 1:

Third, we also preserve the �rst law of thermodynamics since

(2.26) U(3)
q (A + B) = U(3)

q (A) + U(3)
q (B)

where A and B are two independent systems.

2.2. Meaning of the Nonadditivity Parameter

The parameter q is associated with the nonadditivity of the entropy values of the inde-

pendent systems A and B. This is why it is called the nonadditivity index. However, since

the Tsallis entropy is a one-parameter generalization of BG entropy, it is very important

to understand the physical meaning of this parameter i.e., q. The nonadditivity parameter

can indeed be given a physical meaning in terms of 
uctuations. This idea has �rst been

put forth by Wilk and W lodarczyk [20]. Wilk et al. considered a general function Gq(x),

which is written in terms of q- exponential de�ned in Eq. (2.4)

8



(2.27) Gq(x) = Cq[1� (1� q)
x

�
]1=(1�q):

As expected,

(2.28) Gq=1 = cexp(�x

�
):

Adopting the abbreviation � = 1=(q � 1), Wilk et al. looks for a function f (1=�), which

leads from the exponential to the inverse power law of q-exponential type in Eq. (2.27)

with a 
uctuation around the mean value 1=�0. This can be written as

(2.29) Gq(x ;�0) = Cq

∫ 1

0

exp(�x

�
)f (1=�)d(1=�):

The solution for such a function f (1=�) is given in terms of Euler gamma function

(2.30) f (
1

�
) =

1

�(�)
(��0)(

��0
�

)��1 exp(���0
�

):

The mean of this distribution is

(2.31)

〈
1

�

〉
=

1

�

with the variance

(2.32)

〈
(

1

�
)2

〉
�

〈
1

�

〉2

=
1

��20
:

This �rst observation between the 
uctuation and the nonadditivity parameter q has been

generalized by the so-called superstatistics [4]. After its �rst formulation, the superstatis-

tics found many �elds of application for itself. Some of these applications can be cited

as hydrodynamic turbulence [21], cosmic rays [22], solar 
ares [23], random matrix the-

ory [24] and hydro-climatic 
uctuations [25]. Beck and Cohen [4] considered a driven

nonequilibrium system composed of regions that exhibit spatio-temporal 
uctuations of

9



an intensive quantity. This intensive quantity can be pressure or chemical potential. How-

ever, Beck and Cohen considered this 
uctuating quantity to be �. This case cannot

be treated by the 
uctuation theory of Onsager and Machlup since their theory is re-

stricted to the extensive variables only. The superstatistics on the other hand deals with

a nonequilibrium steady state of a macroscopic system and focuses on the 
uctuations of

the intensive quantities. The nonequilibrium steady state is made up of many smaller cells

that are temporarily in local equilibrium. The intensive quantity (i.e., inverse temperature)

� is constant in each cell. Each cell is large enough to obey statistical mechanics and the

distribution of the intensive variable � is determined by f (�). If E is the energy of the

microstate associated with each cell, an e�ective Boltzmann factor is written as

(2.33) B(E) =

∫ 1

0

d�f (�)q�(x)

where q�(x) = e��H(x)

Z0
. If the distribution f (�) is peaked about �0 i.e.,

(2.34) f (�) = �(� � �0);

one recovers the ordinary Boltzmann factor. The distribution f (�) can be chosen in many

ways. However, there are some limitations such as the normalization. Moreover, the new

statistics too must be normalizable i.e., the integral
∫1
0
dEB(E) must exist. The new

statistics obtained from the superstatistics must reduce to BG statistics whenever there

are no 
uctuations of the intensive quantity. Now, following Wilk et al., we consider a

Gamma distribution de�ned as

(2.35) f (�) =
1

b�(c)
(
�

b
)c�1e��=b

where c > 0 and b > 0. The mean and the variance of the intensive variable � is

(2.36) h�i = bc ; �2 = b2c:

10



The generalized Boltzmann factor for the above case can be found by integration and

reads

(2.37) B(E) = (1 + bE)�c :

Identifying c = 1=(q � 1), we can write the above generalized Boltzmann factor as

(2.38) B(E) = (1 + (q � 1) h�iE)1=(1�q);

which is the Tsallis distribution. Note that it is normalizable for c > 1. According to

the superstatistical framework, di�erent probability distributions associated with the 
uc-

tuations of the intensive variables give rise to di�erent statistics. The Tsallis distribution

is only one of them!

2.3. Hyperensembles, Superstatistics and Tsallis Entropy

The superstatistics provides a very general framework to relate the underlying 
uctua-

tions of the intensive variables to the newly emerging out-of-equilibrium statistics di�erent

than BG statistics. However, one missing link is the ad hoc probability distribution of the


uctuation i.e., f (�). If we can �x this distribution of the 
uctuation through some

method, then the superstatistics will have a stronger foundation. One way to solve this

is provided by Gavin Crooks [26]. Crooks considered the concept of hyperensembles and

the maximization of the hyperensemble in order to determine the so-far ad hoc distribu-

tion of the 
uctuation. The "hyperensemble" is an ensemble of ensembles, whose each

member has the same instantaneous Hamiltonian, but described by a di�erent probability

distribution. Instead of �nding the probability distribution of the system,one looks for the

metaprobability P (�) that maximizes the entropy H of the hyperensemble i.e.,

(2.39) H = �
∫

P (�) log(
P (�)

m(�)
):

11



In the above equation, m(�) acts as a prior and is a measure on the space of the probability

distributions. It ensures the invariance of the entropy under di�erent parametrizations.

Having chosen the form of the hyperentropy, we need to �x the constraints in order to

maximize the hyperentropy. The constraints can be chosen as the normalization and mean

energy i.e.,

(2.40)

∫
P (�)d� = 1

and

(2.41) hhEii =

∫
P (�)(

∑
i

�iEi)d� = 1:

Lastly, we need a measure of how far the hyperstate is to the state of equilibrium. For

this purpose, we consider the following entropy as a constraint

(2.42) hSi =

∫
P (�)(�

∑
i

�i log �i)d� = 1:

The maximization of the hyperentropy subject to these constraints yields

(2.43) P (�) = m(�)e��0��1hEi��2S(�)

where S(�) = �∑
i �i log �i . The constraints can be reselected without loss of generality

so that �0 = Z(�; �), �1 = � and �2 = ��. The above equation then reads

(2.44) P (�) =
m(�)

Z(�; �)
e��hEi+�S(�):

The hyperprobability distribution in Eq. (2.44) is the probability of the 
uctuations of

the intensive variables i.e., f (�) given by Eq. (2.33). Therefore, as superstatistics is

the underlying framework in terms of the 
uctuations, the maximization in terms of

hyperensembles is what lies underneath the 
uctuations. Combining these two, we are
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armed with a uni�ed view of the strange statistics emerging in di�erent systems such

as q-exponential distribution. It is important to see how the ideas of superstatistics and

hyperensembles work together in a unique manner. For this purpose, we �rst consider the

microcanonical ensemble. The probability distribution of the microcanonical ensemble is

given by

(2.45) q�(x) =
�(E �H(x))

�(E)

where the density of states � equals
∫
dE�(E � H(x)). The microcanonical entropy is

equal to S = ln �(E), where we set the Boltzmann constant equal to unity. Having set

also � to unity, the substitution of Eq. (2.45) into Eq. (2.44) results

(2.46) P (�) =
m(�)

Z(�)
�(E)e��hEi:

The hyperprobability distribution P (�) found above is nothing but f (�) in Eq. (2.33).

Therefore, the substitution of P (�) in Eq. (2.33) gives

(2.47) B(E) =
m

Z(�)
e��E:

This is an important results since what appears to be microcanonical at the hyperensemble

level becomes canonical BG statistics after the 
uctuations of the intensive variable � is

taken into account through the superstatistical framework [27]. It is worth remark that

no ad hoc move has been made in the above calculation. All that was necessary is to use

the 
uctuation of the intensive variable and hyperensemble entropy maximization. One

point needs to be clari�ed though. Crooks originally proposed the hyperensemble maxi-

mization as a means to study out-of-equilibrium systems. However, both microcanonical

and canonical cases are relevant to equilibrium. In fact, this is why we could set � to unity

since this is the Lagrange multiplier, which is associated with the distance o� equilibrium.

Although we have seen how the probability of the 
uctuations can be found by the

maximization of the hyperensembles, we have not studied the q-exponential distribution

13



stemming from the Tsallis entropy. The reason for this is that there is yet no way to �nd

inverse Gamma distributions, which are responsible for q-exponential distribution through

the hyperensemble method. We know that the 
uctuations of the inverse Gamma form

result in the q-exponential distribution. However, this is an ad hoc move as long as it

cannot be derived through hyperensemble maximization. This is an open problem waiting

to be solved.
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CHAPTER 3

NONADDITIVE REACTION RATE

One example for the use of the nonadditive Tsallis entropy can be given by studying the

reaction rates. The classical formulation given by Kramers [28] and developed ever since

always results in survival probability distributions in the form of exponentials. Kramers

was able to calculate the dependence of escape probability on viscosity and temperature

through his model. Kramers' model has been extended by scientists like H�anggi et al.

[29], Montroll and Schuler [30] for example to consider non-Markovian e�ects [31]. It is

worth to notice that all these attempts ended up in having a survival probability which

decays exponentially in time. However, there are some reactions, which provides survival

probabilities of the inverse power law form. In other words, one needs a nonexponential

treatment of this subject. The need of generalizing Kramers' rate in such a way as to

have a nonexponential decay in time is due to the o�-equilibrium condition since this

condition creates genuine power laws [32, 33, 34]. In this chapter, I will �rst outline the

ordinary Kramers' reaction rate formulation due to Risken [35] and then provide a new

theory, which functions in terms of inverse power law survival probabilities. By generalizing

survival probability using nonadditive Tsallis formalism, I obtain a survival probability which

is of the form of an inverse power law in the asymptotic regime. I also compare this to

some recent experimental �ndings in protein rebinding [36, 37, 38]. Indeed, it has been

shown by T. D. Frank and Da�ertshofer [39] that nonlinear Fokker-Planck equations

can result in survival probabilities of the q-exponential form. Moreover, Plastino et al.

[40] considered nonlinear reaction-di�usion equations with nonlinear di�usion and reaction

term and showed that they possess exact time-dependent particular solutions of Tsallis'

maximum entropy form. Recently, Niven [41] approached the reaction rate problem in

nonadditive formalism from a di�erent point of view by considering q as the reaction

order.
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It is worth remark that there has been only one attempt to generalize Kramers' re-

action rate problem so as to include inverse power law survival probability distributions.

However, this attempt has been made to generalize the reaction rate of Kramers through

the use of Mittag-Le�er function where survival probabilities have been in the form of

inverse power law asymptotically [42]. Although q-exponentials provided by the Tsallis

formalism result in inverse power laws asymptotically like Mittag-Le�er function, one

main di�erence between the two is concerned with the interpolation. Mittag-Le�er func-

tion interpolates between the stretched exponential and inverse power law, whereas the

q-exponential distribution is a genuine inverse power law without interpolation. Therefore,

it is important to see whether one can have a generalization of Kramers' reaction rate in

terms of q-exponentials such that a �tting with the experimental data can be based on this

theory. The same experimental data has been used by Tsallis et al. [43] in order to explain

fractal behavior of the experiment through Lyapunov exponents. Our approach is com-

pletely di�erent since it is based on Kramers' model and o�-equilibrium conditions which

generate genuine inverse power laws. Within this approach, not only experimental �ndings

in protein rebinding [36, 37, 38] will be explained but also the inverse power law behavior

found in Ref. [34] in which a stretched exponential and inverse power law distribution with

di�erent powers are interpolated. The Mittag-Le�er function requires the same power

for stretched exponential and inverse power law behavior, therefore cannot explain the

situation in Ref. [34] whereas the survival probability of the form of q-exponential can.

3.1. Kramers' Reaction Rate: the Classical Theory and the Ubiquity of the Exponentials

Kramers [28] considered a point particle in phase space which is initially trapped in an

asymmetric well under a potential V. In addition to this, the particle is also assumed to be

subject to the random Brownian forces of the surrounding medium in thermal equilibrium.

The particle can escape over the potential barrier which means a transition from the

well of reactants to the well of products. Kramers also assumed that the height of the

potential barrier is very large compared with the temperature of the environment ensuring

a slow di�usion process from the well of reactants to the well of products. It is also

assumed that the potential associated with the well of reactants is given by
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(3.1) V (xmin) =
1

2
m(2�!)2x2;

whereas the potential around the barrier is given by

(3.2) V (xmax) = �V � 1

2
m(2�!0)2(x � xmax)

2:

The parameters xmin and xmax are the coordinates whereas ! and !0 are the corresponding

angular frequencies for the well of reactants and products respectively. �V = V (xmax) �
V (xmin) is the height of the potential barrier and m denotes the mass of the particle.

Kramers has taken the mass term equal to unity in his derivation and started by writing

the Fokker-Planck equation concerning the di�usion from the well of the reactants to the

well of the products as follows

(3.3)
@p

@t
=

@V

@x

@p

@v
� v

@p

@x
+ �

@

@v
(vp + ��1

@p

@v
)

where � is the viscosity and � is the inverse temperature. He then considered the large

viscosity limit, where the e�ect of the Brownian forces on the velocity of the particle is

much larger than that of the external force �@V
@x

. Then, for any arbitrary initial distribution,

we expect the Maxwell distribution in velocity i.e., p(x; v ; t) = �(x; t)e��p
2=2 to be reached

after some time of the order of 1=�. From then on, a slow distribution of the density

function � in the position coordinate will take place. This di�usion can further be described

by the Smoluchowski di�usion equation given as

(3.4)
@�

@t
= � @

@x
(�1

�

@V

@x
� � ��1

�

@�

@x
)

where ��1

�
is the di�usion constant. The stationary di�usion current obeys the law

(3.5) w = �1

�

@V

@x
� � ��1

�

@�

@x
= constant:
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The above equation can also be written as

(3.6) w = ���1

�
e��V

@

@x
(�e�V ):

Integrating the above equation along the well of reactants to the well of the products,

Kramers obtains an explicit expression for the di�usion current

(3.7) w =
��1

∣∣�e�V ∣∣B
A∫ B

A
dx�e�V

:

The letter A denotes the position of the well of reactants while the letter B denotes the

position of the products.

Kramers then considers the large viscosity limit i.e., overdamped limit. In this limit,

he assumes that no particle has yet arrived at point B, whereas thermal equilibrium is

reached at A. Therefore, the application of Eq. (3.7) in the high viscosity limit reads

(3.8) w =
��1�A
�

(

∫ B

A

dx�e�V )�1

where

(3.9) �A = (�e�V )nearA:

The number nA of particles near A can be calculated with the help of Eq. (3.1) (setting

mass term equal to unity) by

(3.10) nA =

∫ +1

�1

dx�Ae
�� 1

2
(2�!)2x2 =

�A
!

√
��1

2�
:

The reaction rate r is de�ned as the probability in unit time that a particle originally

caught at A escapes to B i.e.,

(3.11) r =
w

nA
:
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In order to have an explicit reaction rate expression, I consider that the dominant potential

will be given by Eq. (3.2) and therefore substitute this expression into Eq. (3.8) to obtain

(3.12) r �= 2�!!0

�
e���V :

Note that the reaction rate for the overdamped case can also be written as

(3.13) r �= 1

2�m
��1

√
V 00(xmin) jV 00(xmax)je���V

by the substitution of Eqs. (3.1) and (3.2).

Next, Kramers considers the low viscosity limit. However, before proceeding, he re-

stricts his analysis to the case, where the oscillatory motion would be observed in the

absence of Brownian forces. In this sense, the Brownian forces in the low viscosity limit

will only gradually change the ensemble of distributions over the di�erent energy values.

He then denotes the area inside a curve of constant energy as I, which is equal to
∮
pdx .

The di�usion equation corresponding to this case is written as

(3.14)
@p

@t
= �

@

@I
(Ip + I��1

@p

@E
):

A stationary state of di�usion with the current density w corresponds to

(3.15) w = ��(Ip + I��1
@p

@E
) = ��I��1e��E @

@E
(pe�E):

Integrating the above equation from the point A to point B, I obtain

(3.16) w =
���1

∣∣pe�E∣∣B
A∫ B

A
dE e�E

I

:

Proceeding in a similar manner as in the case of high viscosity, I calculate w as

(3.17) w ' �pA
�V

!
e���V :
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The number of particles is now calculated as

(3.18) nA =
pA
�!

:

Finally, the reaction rate can be found as dividing the two terms above so that I obtain

the reaction rate in the low viscosity (underdamped) limit

(3.19) r ' w

nA
= ��V �e���V :

The inspection of Eqs. (3.13) and (3.19) shows that the reaction rate for both over-

damped and underdamped cases are of exponential form. This is indeed a result of the

fact that the underlying dynamics has been described by linear Fokker-Planck equations

whose solutions are exponential. In this sense, one can consider a general picture by

writing for the survival probability as

(3.20) psurv ival(t) = exp(�r t)

where r denotes the rate of the process and t is time parameter. In the overdamped case,

the rate is given by Eq. (3.13) whereas the underdamped rate is provided by Eq. (3.19).

However, it is worth remark that the main structure is exponential in both cases as can

be seen from Eq. (3.20).

3.2. Kramers' Nonadditive Reaction Rate: the Ubiquity of the Inverse Power Laws

As we have seen in the previous section, Kramers' reaction rate is based linear Fokker-

Planck equations, which resulted in the reaction rates of the exponential form. However,

the recent progress in the Fokker-Planck equations resulted in fractional Fokker-Planck

equations [42] and non-linear Fokker-Planck equations (NLFPE) [39]. Both of them

result in inverse power law distributions asymptotically as the stationary distribution. In

this sense, a generalization of Kramers' reaction rate is necessary. The NLFPE derived

by Frank and Da�ertshofer in the case of a generalized Kramers' rate problem is given as
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(3.21)
@p(x; v ; t)

@t
= f�v @

@x
+

@

@v
(
@V (x)

@x
+ 
v)gp(x; v ; t) + �


@

@v
M(p)

@

@v
L̂S:

In the equation above, 
 denotes the friction constant, � denotes the Lagrange multiplier

associated with the energy. The S denotes the entropy functional written in terms of

probability density. The above equation reduces to Kramers type Fokker-Planck equation

when the entropy functional S bomes Boltzmann-Gibbs entropy. The operator L̂ has the

explicit form

(3.22) L̂S � S(p)� p
dS(p)

dp
:

Inserting the Tsallis entropy given by Eq. (2.1) into Eq. (3.21) and setting M(p) equal

to 1, we obtain the Kramers equation for the nonadditive Tsallis formalism

(3.23)
@p(x; v ; t)

@t
= f�v @

@x
+

@

@v
(
@V (x)

@x
+ 
v)gp(x; v ; t) + �


@2

@v 2
pQ

where Q is the particular nonadditivity parameter of Tsallis entropy. The stationary

solution to the above equation, after some rearrangement, is given by

(3.24) pq(t) = expq(�r t) = [1 + (q � 1)r t]1=(1�q)

where I have assumed Q = 2�q. The probability density pq(t) is normalized as a survival

probability in the sense that it is equal to 1 at t=0, mimicking the exponential case given

by Eq. (3.20). The q-exponential is de�ned as

(3.25) expqx � [1 + (1� q)x ]1=(1�q):

As expected, this function becomes the usual exponential function as q! 1: By reference

to Eq. (3.24), I now have a survival probability of the inverse power law form.
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In order to generalize Kramers' reaction rate to the nonadditive case, I note that the

ordinary reaction rate can be calculated as following:

(3.26) r � p(t = 0)

p̂(u = 0)

where p̂(u) is the Laplace transform of the function p(t) given by Eq. (3.20). Laplace

transform p̂(u) of p(t) is de�ned by p̃(u) =
1∫
0

p(t)e�utdt. Note that when the Laplace

variable u is equal to zero, we have the normalization of the function p(t). Similarly then,

I write

(3.27) rq � pq(t = 0)

p̂q(u = 0)

where the Laplace transform is de�ned in the same way above. The Laplace transform

p̂q(u) at u = 0 is the integral of the function pq(t) from zero to in�nity i.e., its normal-

ization. This is obtained as

(3.28) p̂q(u = 0) =
1

r

1

2� q
; q < 2

where r is the ordinary rate of the process i.e., r = rq!1. The constraint q < 2 has

been put since the Laplace integral otherwise diverges. Since pq(t = 0) = 1, I obtain the

generalized reaction rate as

(3.29) rq = (2� q)rq!1; q < 2:

The Eq. (3.29) is valid for both overdamped and underdamped cases as long as rq!1 is

taken to be of the form in Eqs. (3.12) (or the equivalent form given by Eq. (3.13)) and

(3.19) i.e., the ordinary (additive) reaction rates for the overdamped and underdamped

cases. For the former case, I get

(3.30) rq = ��1q

√
V 00(xmin)=V 00(xmax)

2�m
e���V
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where

(3.31) �q =
�

(2� q)
:

For the latter, I have

(3.32) rq = �0q��V e���V

where

(3.33) �0q = (2� q)�:

From Eqs. (3.31) and (3.33), we see that �=�q = (2�q) and �0
q
=� = (2�q), respectively:

The nonextensive friction constants (i.e., �q and �0
q

in the overdamped and underdamped

cases respectively) is rescaled by the same factor (2-q). We also note that nonadditive

formalism gives rise to turnover in the dependence of friction since rq / ��1q and rq / �0q

in the overdamped and underdamped cases respectively as can be seen from Eqs. (3.30)

and (3.32). This turnover is already inherent in the Eqs. (3.12) and (3.19), which is the

additive theory and I successfully preserved this form in nonadditive formalism.

The Kramers' theory is also being used for investigating the chemical reactions in the

proteins. However, the related survival probability in this case is non-exponential. In fact,

the experiment of ligand CO rebinding to myoglobin after photodissociation as investigated

by Iben et al. [36] shows an inverse power law behaviour in the time asymptotic limit until

one reaches a certain higher critical temperature Tc . Gl�ockle and Nonnenmacher [37]

assumed this power to be temperature dependent and equal to �(T ) = 0:41T=120 to take

the change in the protein-solvent system into account. In Fig. 1, I provide some plots for

survival probability pq(t) for q = 2.8, 3.1 and 3.4, which correspond to these experimental

�ndings [38] for temperature values T = 160 K, 140 K and 120 K, respectively. This plot

shows that as temperature increases, the nonadditivity of the system becomes less and

less dominant.
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Figure 3.1. The nonadditive survival probability pq(t) given by Eq. (3.8)

versus time for the temperatures 120 K, 140 K and 160 K corresponding

to the values of q equal to 3.4, 3.1 and 2.8 respectively.

In summary, I have studied nonadditive generalization of Kramers' reaction rate by

writing the survival probability as a q-exponential. I showed that the dependence of non-

additive Kramers' rate to the nonadditive friction term in the high viscosity limit changes

to inverse proportionality in the low viscosity limit. In fact, this is a property of the or-

dinary Kramers' theory and nonadditive formalism preserves this important turnover. I

calculated nonadditive reaction rate by making use of Laplace transform and observed

that the relation between the additive and nonadditive cases is found out to be linear.

Therefore, the Arrhenius nature of the Kramers' rate is preserved. I then referred to some

experimental data concerning the ligand CO rebinding to myoglobin after photodissoci-

ation. In this experiment, survival probability is of the form of inverse power law with a

power depending on temperature due to change in the protein-solvent system in the time
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asymptotic limit. It has been shown in Fig.1 by plotting nonadditive survival probability

for various temperature values that some q values which are di�erent than 1 correspond

to these distinct cases. I propose this to be a signature of nonadditivity in the photodis-

sociation of the process of CO rebinding to myoglobin. Moreover, Fig.1 shows that as

temperature increases, the nonadditivity of the system becomes less and less dominant.

Therefore, this phenomonological picture is in accordance with the experimental �ndings

which indicate that the survival probability becomes exponential at a higher temperature.

This transition from power law to exponential can be seen by the inspection of Fig.1, since

as temperature continues to increase, we expect the nonadditivity parameter q to drop to

1 at some higher critical temperature, which means the transition to exponential case. In

Ref [42], this behavior has been tried to be explained by the use of Mittag-Le�er function,

but I believe that nonadditive scenario gives a more adequate picture since Mittag-Le�er

forces one to interpolate between the stretched exponential and inverse power law behav-

ior with same exponent only. In fact, if one inspects Ref. [34], one immediately sees that

it is a stretched exponential and inverse power law distribution with di�erent powers to be

interpolated. This cannot be done using Mittag-Le�er function, which requires the same

power for stretched exponential and inverse power law behavior. My �nal remark is about

Ref. [43], which uses the same experimental �ndings as I did in Fig.1, but the novelty

here compared to Ref. [43] lies in the use of di�erent approaches. I tried to generalize

Kramers' rate in a way which will provide survival probabilities of inverse power law [44],

whereas Ref. [43] treats the same subject from the point of view that the same set of

data can be used in order to explain fractal behavior of the experiment through Lyapunov

exponents.
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CHAPTER 4

GENERALIZATION OF THE GIBBS' AND S-THEOREM TO OPEN SYSTEMS

In this chapter, I will �rst review Gibbs' theorem [3] and then S-theorem due to

Klimontovich [45-51]. The Gibbs' theorem rests on the comparison of states with equal

energies. It can be generalized to open systems with matter or energy in
ux. This has

been provided by Klimontovich and has been named as S-theorem [45-51]. I show that

the fact that S-theorem can be seen as a criterion for the self-organization as de�ned by

Haken [52].

4.1. Gibbs' Theorem

In this Section, I will present the Gibbs' theorem. Gibbs considers two distributions p

and r , both normalized to unity i.e.,
∫
p(E)d
 =

∫
r(E)d
 = 1, where 
 denotes phase-

space and d
 = dq1:::dpn. The probability distribution p is the canonical distribution

(4.1) p(E) = e�

where � = ��E. The distribution r is any other distribution having the same mean energy

as p(E) and can be written as

(4.2) r(E) = e�+��:

Since the mean energies of these distributions are assumed to be equal to one another,

we can write

(4.3)

∫
�e�d
 =

∫
�e�+��d
:

We need to prove, under these assumptions, that
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(4.4)

∫
�e�d
 <

∫
(� + ��)e�+��d
;

since the multiplications of both sides by minus one will change the sign of equality. By

Eq. (4.3), the inequality (4.4) takes the form

(4.5)

∫
��e�+��d
 > 0:

Due to the normalization, Eq. (4.5) can be rewritten as

(4.6)

∫
(��e�� + 1� e��)e�d
 > 0:

The term (��e�� + 1 � e��) is a decreasing function for negative values of ��, and an

increasing function for positive values of ��. It becomes zero when �� is equal to zero.

Therefore, the inequality (4.6) is proved. Hence, we can say that the Gibbs' theorem

orders the entropy values in such a way that the canonical entropy associated with the

equilibrium distribution is maximum.

4.2. Open Systems and Klimontovich's S-theorem

Although Gibbs' theorem is central to the canonical ensembles, one of the main as-

sumptions of Gibbs was to consider equal mean energy ensembles as we have seen in the

previous Section. It is in this sense that it needs to be generalized in order to be applied

to the open systems. The open systems are those systems in which an energy or matter

in
ux can be observed so that the mean energy is not constant.

The generalization of the Gibbs' theorem for open systems has been �rst o�ered by

Yu. L. Klimontovich [45-51]. Klimontovich's formalism consists in equating the average

energies of the stationary distributions so that the entropy lowering i.e., �S = Seq�Sneq �
0, where the subscripts denote the equilibrium and nonequilibrium states respectively. This

result is called S-theorem by Klimontovich. Instead of entropy lowering based on ordinary
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stationary distributions, I will use renormalized entropy R, which is de�ned as (��S),

where the mean energies are set equal to one another. Then, S theorem states that

(4.7) R = Sneq � S̃eq � 0:

The superscript � indicates that the new equilibrium entropy is obtained by renormaliza-

tion of the old equilibrium distribution. The equality occurs only when the system stays

at equilibrium for all times.

In order to understand the S-theorem, it is instructive to see how it works in practical

cases. For this purpose, the sustained pendulum serves as a good example, using the

modi�ed Van der Pol oscillator suggested by Engel-Herbert and Ebeling [45-51]. This

model is called the modi�ed Van der Pol oscillator due to the additional term proportional

to the cube of the velocity.

The Langevin equation for the modi�ed Van der Pol oscillator is

(4.8)
dx

dt
= v ;

dv

dt
+ (a + bE)v + !2

0x = y(t)

where !0 is the eigenfrequency, and b is the nonlinear friction coe�cient. The term a can

be written in terms of two other parameters i.e.,

(4.9) a = 
 � af

where 
 is the coe�cient of linear friction and af is the feedback coe�cient (or called

control parameter) for this particular physical system. The energy E of oscillation is

(4.10) E =
1

2
(v 2 + !2

0x
2):

Note that the mass term is set equal to unity in the equation above. The random Langevin

source y(t) has the following properties
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(4.11) hy(t)i = 0; hy(t)y(t)0i = 2D�(t � t 0)

where the intensity of the random source D is a positive constant It is not connected with

the temperature via Einstein's formula in general, since the system can be in one of the

nonequilibrium stationary states. If we assume that the dissipation is small and random

forces exerted on the oscillator are weak i.e., 
; jaj ; b hEi � !0, then the stationary

distribution can be found from Fokker-Planck equation [46]

(4.12) f0(E) = C exp(�aE + 1
2
bE2

D
)

where C is a normalization constant. The state of equilibrium corresponds to the case

when the feedback parameter af is equal to zero. Then the corresponding distribution

function becomes

(4.13) r(E) = C exp(�
E + 1
2
bE2

D
):

Assuming [46]

(4.14) b hEi =
 � Db=
2 � 1;

the stationary equilibrium distribution becomes

(4.15) r(E) =



D
exp(�
E

D
):

Now, I increase the control parameter to a value di�erent from zero and create a nonequi-

librium state in the system. In the modi�ed Van der Pol oscillator, the threshold of gen-

eration is de�ned as the state when the feedback parameter af is equal to 
. Then,

according to Eq. (4.9), a=0. Therefore, the distribution function for this case becomes
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(4.16) p(E) =

√
2b

�D
exp(�bE2

2D
):

Once I have the distribution functions, I use

(4.17) hEi =

∫
dEp(E)E; SBG = �

∫
dEp(E) ln p(E)

to calculate the corresponding entropy and mean energy expressions for the equilibrium

as

(4.18) SBG(r)(eq) = ln(
D



) + 1; hEi(eq) =

D




and for the o�-equilibrium case

(4.19) SBG(p)(neq) = ln(

√
�D

2b
) +

1

2
; hEi(neq) =

√
2D

�b
:

The subscript denotes that the calculations have been carried out by using Boltzmann-

Gibbs entropy (BG), where the superscripts (eq) and (neq) denote equilibrium and nonequi-

librium states, respectively. Note that the units are chosen such that the Boltzmann

constant k is equal to one. I have now two distinct entropy expressions corresponding

to equilibrium and o�-equilibrium cases. If I calculate the entropy lowering directly from

Gibbs' theorem, also considering Eq. (4.14), I see that Gibbs' theorem is violated, i.e.,

(4.20) �S = Sneq � Seq > 0:

It is at this stage that S-theorem can be put to use. This is done by \renormalizing" the

mean energies of both states so that they are be equal to one another. If I choose the

nonequilibrium state as the reference state, the renormalization is

(4.21)
〈
Ẽ

〉(eq)

=
〈
Ẽ

〉(neq)

=

√
2D

�b
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where � denotes the renormalized quantities. This renormalization procedure will provide

a new intensity of the random force associated with the equilibrium state, which is given

by

(4.22) D̃(eq) = 


√
2D

�b
:

Note that the random force intensity relevant to the nonequilibrium distribution will not

change at all since I have chosen it as the reference state. Substituting this new intensity

expression into Eqs. (4.15) and (4.18), we obtain the renormalized equilibrium distribution

function

(4.23) r̃(E) =

√
�b

2D
exp(�

√
�b

2D
E)

and the associated entropy expression is

(4.24) S(r̃) = ln(

√
2D

�b
) + 1:

The renormalized entropy is now

(4.25) R = Sneq � S̃eq = �0:05 < 0:

This result is independent of the parameters. Thus, the equilibrium entropy is maximum

even for additive open systems if one renormalizes the mean energies of the states, con-

�rming that Klimontovich's S theorem is a generalization of Gibbs' theorem for open

systems. However, the scope of the S-theorem is not limited to the equilibrium distribu-

tions since one can compare two nonequilibrium distributions to see which one is closer

to equilibrium just by calculating the corresponding renormalized entropies.
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4.3. An Alternative Derivation of the S-theorem: Renormalized Entropy and Kullback-

Leibler Relative Entropy

In this section, I give an abstract derivation of S-theorem. In order to do this, I

suppose that I have two distinct probability distributions i.e. p=fpig and r=frig, which

are normalized to unity, i.e.
∑

i pi =
∑

i ri = 1. These distributions refer to the state of a

physical system with di�erent control parameters. In this sense, they can be chosen to be

equilibrium or nonequilibrium distributions corresponding to di�erent values of the control

parameter. The stationary equilibrium distribution is obtained when the relevant control

parameter is set to zero. As the value of control parameter increases, the system moves

away from the equilibrium state. The determination of control parameter itself might not

be easy for some systems, but I will not address this issue here. Assuming that we have

a well-de�ned control parameter for the system, such as the feedback coe�cient in the

Van der Pol model, I obtain an alternative derivation of Klimontovich's S-theorem due

to Quiroga et al. [56, 57]. The discrete picture is adopted, but the results can easily be

generalized to the continuous domain.

I begin by noting that I can calculate the corresponding BG entropy, once I have the

relevant distribution functions by using

(4.26) SBG(p) = �
∑
i

pi ln pi ;

as I have done in the previous section. Next, I set the mean energies equal to one another.

In other words, I renormalize the states in such a way that they possess the same mean

energy. For this purpose, Klimontovich [45-51] de�nes e�ective mean energy Uef f for the

system as

(4.27) Uef f � � ln f0(E)

where f0(E) is given by Eq. (4.12). It is called e�ective mean energy since this quantity

will depend on the control parameter and change as the control parameter varies. The
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mean energy associated with the stationary distributions will not be same even though

the total energy is kept constant. From the stationary distribution given by Eq. (4.12) in

the previous section and using Eq. (4.27), we see that the e�ective mean energy is equal

to (aE + 1
2
bE2). The e�ective mean energy is referred to as the microscopic entropy

analogue in Ref. [58], since its average results in BG entropy. The renormalization of

energies corresponding to the probability distributions p and r can then be written as

(4.28) hUef f i(1) = hUef f i(2)

where superscripts denote the di�erent states. The equation above can be written in a

more explicit form as

(4.29)
∑
i

r̃i ln ri =
∑
i

pi ln ri

where r̃ is the renormalized distribution obtained after equating the mean energies. Note

that the form of e�ective mean energy has been taken as (� ln r(E)) in Eq. (4.29),

since the probability distribution r represents the state to be renormalized, whereas the

probability distribution represented by p is the reference state. The renormalized distri-

bution function corresponding to r=frig can be written in the form of escort probability

distribution [59] i.e.,

(4.30) r̃i =
r�i
C

where the constant C is found from the normalization condition and the exponent � can

be found from the renormalization of energies i.e., through Eq. (4.29). In this sense,

S-theorem can be thought as a procedure of converting ordinary probability distribution r

to its escort counterpart r̃ . The exponent is determined by the renormalization of energies

as given by Eq. (4.28) in general. Klimontovich combined ordinary, additive BG entropy

together with the escort distribution, whose exponent is given by the renormalization

condition, in order to generalize Gibbs' theorem for open, nonequilibrium systems. It is
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important to understand the equivalence of this approach with the one presented in the

previous section.

Let us reconsider the modi�ed Van der Pol oscillator to �nd the renormalized distribu-

tion function by using the constraints of normalization and renormalization. Substitution

of Eq. (4.15) into Eq. (4.30) above, and making use of normalization condition, we

obtain

(4.31) C =
1

�
(



D
)��1:

Substituting the normalization constant C back into Eq. (4.15), we obtain for the con-

tinuous case

(4.32) r̃(E) =
�


D
exp(��


D
E):

In order to obtain the explicit form of the renormalized equilibrium distribution function,

I need to obtain � and this can be done by using Eq. (4.28). The right hand side of Eq.

(4.28) is calculated as

(4.33)

∫ 1

0

dEp(E) ln r(E) = ln(



D
)� 


√
2

�bD
;

whereas the left hand side of Eq. (4.28) is calculated to be

(4.34)

∫ 1

0

dEr̃(E) ln r(E) = ln(



D
)� 1

�
:

Since Klimontovich's S-theorem requires mean energies to be equal to one another, I set

two equations above equal to one another to obtain � as

(4.35) � =
1




√
�bD

2
:
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If I insert the above expression into Eq. (4.32), I obtain the renormalized equilibrium

distribution

(4.36) r̃(E) =

√
�b

2D
exp(�

√
�b

2D
E);

which is the same as Eq.(4.23). This shows the equivalence of two distinct treatments

presented in the previous and present section.

I am now ready to introduce the alternative formulation of additive S-theorem of

Klimontovich, based on the renormalization of the escort distribution. The renormalized

entropy of Klimontovich is de�ned as

(4.37) R(pkr̃) � S(p)� S(r̃)

where R(pkr̃) is written instead of R for the renormalized entropy. Thus, the explicit

dependence of renormalized entropy on two distinct probability distributions and the re-

quirement of equating their mean energies are apparent. Using the de�nition of BG

entropy given by Eq. (4.17), I obtain

R(pkr̃) = �
∑
i

pi ln pi +
∑
i

r̃i ln r̃i :(4.38)

Using Eqs. (4.29) and (4.30) in the equation above for the second term on the right

hand side of the equation, we get

(4.39) R(pkr̃) = �
∑
i

pi ln(pi=r̃i):

Comparing Eq. (4.39) with Kullback-Leibler (K-L) relative entropy [60]

(4.40) K[pkr ] �
∑
i

pi ln(pi=ri);

we �nd the relation obtained by Quiroga et al. [56, 57]
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(4.41) R(pkr̃) = �
∑
i

pi ln(pi=r̃i) = �K[pkr̃ ]:

This �nal result shows us that renormalized entropy and negative of the K-L entropy

are equal to one another. However, this equality does not su�ce to conclude that Eq.

(4.41) is an alternative derivation of Klimontovich's S-theorem, since this theorem requires

renormalized entropy to be negative for all values of the control parameter. In order to

see that this is indeed the case, it su�ces to recall that K-L entropy is positive de�nite

[60]. Due to the minus sign in the equation above, we conclude

(4.42) R(pkr̃) = Sneq � S̃eq = �K[pkr̃ ] < 0;

which implies S̃eq > Sneq. In other words, one can use renormalized entropy or K-L

entropies in order to study self-organization once one employs the escort distribution and

renormalization of mean energy values.
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CHAPTER 5

NONADDITIVE GENERALIZATION OF KLIMONTOVICH'S S-THEOREM IN OPEN

SYSTEMS AND CONSTRAINTS

Gibbs' theorem ensures that the canonical Gibbs distribution is the one with maximum

entropy among all possible normalized distributions, that have the same mean energy.

However, Gibbs' theorem rests on two main assumptions. First of all, it is based on the

canonical distribution of exponential form. Second, it assumes that the mean energies of

the compared distributions are equal. As we have seen in Chapter 4, this is the reason why

Klimontovich generalized it in the case of open systems, since the equality of the mean

energies fails in this case due to the energy and/or matter in
ux. De�ning a new quantity

called "renormalized entropy", Klimontovich's S-theorem provides the correct ordering of

entropies with respect to their distance from the equilibrium state. Nonequilibrium states

are created by energy and/or matter in
ux and can be modeled by changing the control

parameter. When the control parameter is set equal to zero, we have the equilibrium

distribution. In other words, the S-theorem ensures that the equilibrium distribution cor-

responding to the zero value of the control parameter has the maximum entropy even in

open systems. It is therefore a generalization of Gibbs' theorem, which ensures that the

canonical equilibrium distribution has the maximum entropy. The S-theorem is valid even

when we compare two nonequilibrium distributions, providing a relative measure of order

also in this case. On the other hand, Klimontovich's generalization is still based on the

distribution functions of the exponential form. Due to the increasing evidence of inverse

power law type of stationary distributions encountered in nature, another generalization

of Gibbs' theorem and consequently the S-theorem is required.

The aim of this chapter is to attain this goal by using Tsallis entropy, since the

stationary distributions of this entropy are of inverse power law form. I will generalize

Klimontovich's S-theorem to nonadditive systems with stationary distributions of inverse
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power law form, so that it can then be used for nonadditive open systems and it has a

wider scope.

5.1. Nonadditive Generalization of S-theorem

As we have seen in Chapter 2, the Tsallis entropy has the stationary distributions of

the inverse power law form. The Tsallis entropy is given by

(5.1) Sq(p) =

∑W
i=1 p

q
i � 1

1� q

where pi is the probability of the system in the ith microstate, and W is the total number of

the con�gurations of the system. The entropic index q is a real number, which character-

izes the degree of nonadditivity. The Tsallis entropy obeys the following pseudo-additivity

rule:

(5.2) Sq(A + B) = [Sq(A)] + [Sq(B)] + (1� q)[Sq(A)][Sq(B)]

where A and B are two independent systems i.e., pi j(A+B)=pi(A)pj(B). As q! 1, the

nonadditive Tsallis entropy given by Eq. (5.1) becomes the usual BG entropy

(5.3) Sq!1 = �
W∑
i=1

pi ln pi :

In order to generalize the S-theorem using the nonadditive Tsallis entropy, I use the

alternative derivation explained in Chapter 4. To do so, I need to de�ne a new "e�ective

mean energy", which is also the microscopic analogue of the associated entropy de�nition

i.e., Tsallis entropy. This can be done by noting that Tsallis entropy is an entropy based

on deformed logarithms. Therefore, I have the corresponding de�nition of logarithmic

function in Tsallis framework, namely, q-logarithm,

(5.4) lnq(x) =
x1�q � 1

1� q
:

It becomes a natural logarithm when the nonadditivity index q approaches 1.
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The q-logarithm function enables one to generalize the previous de�nition of the ef-

fective mean energy i.e., Eq. (4.27) as

(5.5) Uq
ef f = lnq(1=f0(E)):

Note that it becomes the ordinary e�ective energy expression given by Eq. (4.27) when the

parameter q approaches 1 as expected. Since the state to be renormalized is represented

by the probability distribution r in our formalism, e�ective mean energy will be considered

as lnq(1=r(E)). Using the equality of mean energies of two di�erent states and also the

normalization condition, I obtain

(5.6)
∑
k

r q�1k r̃k =
∑
k

r q�1k pk :

I now use the same de�nition of renormalized entropy given by Eq. (4.37), but substitute

Tsallis entropy instead of BG entropy to obtain

(5.7) Rq(pkr̃) = �[
1

(q � 1)
(
∑
k

pqk �
∑
k

r̃ qk )]:

By adding and subtracting a term, I can rewrite the above equation as

(5.8) Rq(pkr̃) = �[
1

(q � 1)
(
∑
k

pqk �
∑
k

r̃ qk + (q � 1)
∑
k

r̃ qk � (q � 1)
∑
k

r̃ qk )]:

I proceed by using ordinary probability de�nition for r now, given by r̃k = rk
C

, where C

is a normalization constant. This is not the same as the case when I derived additive

S-theorem, since I used escort distribution in its derivation.

I now need to calculate
∑

k r̃
q
k explicitly, since I can then obtain the nonadditive renor-

malized entropy. This term is

(5.9)
∑
k

r̃ qk =
∑
k

pk r̃
q�1
k
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where I have also used the equality of the mean energies in Eq. (5.6). Substituting this

expression for the last two terms in Eq. (5.8), I �nally obtain

(5.10) Rq(pkr̃) = �(

∑
k p

q
k

q � 1
+

∑
k

r̃ qk �
1

q � 1

∑
k

pk r̃
q�1
k �

∑
k

pk r̃
q�1
k );

which is the nonadditive renormalized entropy expression.

I cannot yet conclude that S-theorem is generalized for nonadditive systems, since

I am not sure if Eq. (5.10) is negative for all values of the parameter q. Only if it is

negative for all q values, I can safely conclude that it gives the relative ordering of states.

This will be done in next section.

5.2. Nonadditive Renormalized Entropy and Relative Entropy De�nitions of the Tsallis

Type

The relative entropy expression associated with the BG entropy is called Kullback-

Leibler (K-L) entropy [60] as pointed out in previous chapter and written as

(5.11) K[pkr ] �
∑
i

pi ln(pi=ri)

where r is called the prior probability distribution and p is called the posterior probability

distribution. The K-L entropy is positive de�nite and becomes zero only if the prior and

posterior distributions are equal to one another.

In generalized thermostatistics, we also have relative entropy expressions. However,

for any entropy written in terms of deformed exponential and/or logarithmic functions,

we have two distinct expressions of relative entropy [61], namely, Bregman type [62] and

Csisz�ar type [63]. We will denote the former as B-type and the latter as C-type from

now on. In the case of BG entropy, these two expressions become same and equal to K-L

entropy. In all other generalized thermostatistical frameworks, they yield to two distinct

expressions.

In the case of generalized thermostatistics based on Tsallis entropy, the B-type relative

entropy is given by
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(5.12) Kq[pkr ] =

∑
k p

q
k

q � 1
+

∑
k

r qk �
1

q � 1

∑
k

pkr
q�1
k �

∑
k

pkr
q�1
k ;

whereas C-type reads

(5.13) Iq[pkr ] =
1

1� q
[1�

∑
k

pqk r
1�q
k ]:

Noting the following relationship between the ordinary derivative and K-L entropy

(5.14) K[pkr ] =
d

dx

∑
i

(pi)
x(ri)

1�x jx!1;

One can look for a similar relationship for the B and C-type Tsallis relative entropies. Al-

though there is no such relationship for B-type, there is a similar mathematical relationship

for C-type Tsallis relative entropy, which can be written as,

(5.15) Iq[pkr ] = Dq

∑
i

(pi)
x(ri)

1�x jx!1

where Jackson q-di�erential operator Dq [64] is de�ned as

(5.16) Dqf (x) = [f (qx)� f (x)]=[x(q � 1)]:

Both of these nonadditive relative entropies become K-L entropy as the parameter q

approaches 1 as expected and they are both positive for q > 0 and negative for q < 0.

The comparison of the nonadditive renormalized entropy given by Eq. (5.10) with

these two relative entropy expressions i.e., Eqs. (5.12) and (5.13) shows that the nonad-

ditive renormalized entropy can be written in terms of B-type Tsallis relative entropy in

Eq. (5.13)

(5.17) Rq(pkr̃) = �Kq[pkr̃ ]:
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Since B-type relative entropy is positive for q > 0, I prove that the nonadditive renormal-

ized entropy Rq(pkr̃) is negative for positive values of the nonadditivity index q. Therefore,

I have proved in general that the renormalized equilibrium distribution has the maximum

entropy compared to all other distributions created by nonzero values of the control pa-

rameter i.e.,

(5.18) Rq(pkr̃) = Sq(p)� S̃q(r) = �Kq[pkr̃ ] < 0;

which implies

(5.19) S̃q(r) > Sq(p):

The notation � is used in the above equation in order to remind the reader that I still

need to renormalize mean energy values.

One issue needs clari�cation at this point: I have assumed q > 0 although it can

have negative values. Once it is negative though, it is easy to see that S̃q(r) < Sq(p),

which violates the S-theorem. The point is that the Tsallis entropy is thermodynamically

stable only for positive values of the nonadditivity parameter q [65]. Therefore, the region

corresponding to q < 0 is omitted above, since one expects that the Tsallis entropy to

be stable if one would use it in a generalized thermostatistical framework.

5.3. Nonadditive S-theorem and Constraints

The B and C-type relative entropies both share all the mathematical properties with

K-L entropy. On the other hand, the investigation in the previous section led to B-type

Tsallis relative entropy and not the C-type. Then, it is natural to ask whether this has a

deeper meaning, since S-theorem seemingly cannot be generalized by using C-type relative

entropy.

The question posed above has in fact a profound answer. Although these two relative

entropies share some mathematical properties such as being positive de�nite, they do not

share the same physical meaning. In order to explain what I mean by the word "physical
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meaning", it is enough to focus on K-L entropy in ordinary BG thermostatistics. The K-L

(relative) entropy reads [60]

(5.20) K[pkr ] �
∑
i

pi ln(pi=ri):

The K-L entropy can be thought as a generalization of BG entropy in the sense that

both are equal to one another, apart from a multiplicative constant, when the prior

distribution in relative entropy de�nition is known with certainty i.e., a probability of one

is assigned to it. Therefore, it is always possible to obtain BG entropy as a particular

case of corresponding relative entropy expression, so called K-L entropy. The converse

is not true since K-L relative entropy is a two-probability distribution generalization of

BG entropy. This situation can be compared to the case of Tsallis and BG entropies:

the Tsallis entropy is considered to be a generalization of BG entropy simply due to the

fact that its parameter can be adjusted in such a way that it results in BG entropy as a

particular case. Whenever the nonadditivity index q becomes 1, one obtains BG entropy as

a particular case. In this sense, any relative entropy de�nition associated with a particular

entropy is a generalization of that particular entropy in terms of probabilities whereas

generalized entropies such as the Tsallis entropy are seen to be generalization in terms of

some parameter q.

A second issue regarding the importance of the concept of relative entropy is that

ordinary BG entropy cannot be generalized to a continuum rigorously just by changing

summation to integration since it fails to be invariant under di�erent parametrizations.

On the other hand, the relative entropy de�nition does not face any of these problems.

Therefore, relative entropy is more general in its domain of applicability since it can be

used in the continuum case unlike ordinary BG entropy. All of the remarks above can be

summarized by the statement that the concept of relative entropy is a generalization of the

corresponding entropy de�nition both in terms of probability distributions and continuum

case.
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In order to study the physical meaning of any relative entropy in a thermostatistical

framework, one has �rst to obtain the equilibrium distribution associated with the entropy

of that particular thermostatistics. In this section, I maximize BG entropy subject to some

constraints following the well known recipe of entropy maximization. Let us assume that

the internal energy function is given by U =
∑
i

"ipi , where "i denotes the energy of the

ith microstate. In order to obtain the equilibrium distribution associated with BG entropy,

I maximize the following functional

(5.21) �(p) = �
W∑
i

pi ln pi � �

W∑
i

pi � �

W∑
i

"ipi

where � and � are Lagrange multipliers related to normalization and internal energy

constraints respectively. Equating the derivative of the functional to zero, we obtain

(5.22)
��(p)

�pi
= � ln p̃i � 1� �� �"i = 0:

The tilde denotes the equilibrium distribution obtained by the maximization of BG entropy.

By multiplying Eq. (5.22) by p̃i and summing over i, using the normalization and internal

energy constraints, I have

(5.23) � + 1 = S̃BG � �Ũ:

Substitution of Eq. (5.23) into Eq. (5.22) results in the following equilibrium distribution

(5.24) p̃i = e�S̃BGe�Ũe��"i :

If I now use the equilibrium distribution p̃ as the reference distribution in K-L entropy, I

can write

(5.25) K[pkp̃] =
∑
i

pi ln(pi=p̃i):
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The equation above can be rewritten as

(5.26) K[pkp̃] = �SBG �
∑
i

pi ln p̃i :

I then insert the equilibrium distribution given by Eq. (5.24) in the equation above to �nd

(5.27) K[pkp̃] = �SBG �
∑
i

pi(�S̃BG + �Ũ � �"i):

Carrying out the summation, we have

(5.28) K[pkp̃] = �SBG + S̃BG � �Ũ + �U;

which can be cast into the form

(5.29) K[pkp̃] = �(FBG � F̃BG):

The free energy term is given as usual by F = U � SBG=�. The result above shows that

the physical meaning of the K-L entropy is nothing but the di�erence of the o�-equilibrium

and equilibrium free energies when the reference distribution is taken to be the equilibrium

distribution given by Eq. (5.24) above. This result is very important and can be used, for

example, to study equilibrium 
uctuations or non-equilibrium relaxation of polymer chains

[66].

Since the K-L entropy plays the role of a generalized free energy expression when the

underlying thermostatistics is given by BG entropy, then our previous question concerning

the Tsallis relative entropies can be restated: can they (one or both) play the role of a

generalized free energy expression in nonadditive thermostatistics? If they can, what are

the conditions for this to be realized?

In order to answer questions posed above, I need to obtain the stationary distribution

obtained from the maximization of Tsallis entropy similar to the treatment of the physical

meaning of K-L entropy. The functional to be maximized is written as
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(5.30) �(Sq � �

w∑
i=1

pi � �

w∑
i=1

pi"i) = 0;

which gives

(5.31)
q

1� q
(p̃ord)q�1 � �� �"i = 0:

The superscript (ord) indicated that I have used the ordinary constraint i.e., the �rst

choice mentioned in chapter 2. I then multiply Eq. (5.31) by p̃ord and sum over the index

i so that I get

(5.32) � =
q

1� q
[1 + (1� q)S̃(ord)

q ]� �Ũ(ord):

The tilde denotes the values calculated in terms of the maximum entropy distribution

p̃ord . I obtain the explicit form of the maximum probability distribution by substituting �

into Eq. (5.31), which gives

(5.33) p̃
(ord)
i = [1� q � 1

q

�∑
i(p̃

ord
i )q

("i � Ũ(ord))]
1=(q�1)
+ [1 + (1� q)S̃(ord)

q ]1=(q�1)

where [a]+ � maxf0; ag.

As I did in order to �nd the physical meaning of the K-L entropy, if I substitute

the equilibrium distribution in Eq. (5.33) as the prior r into the B-type relative entropy

expression given by Eq. (5.12), one sees after some some algebra

(5.34) Kq[pkp̃(ord)] = �(F (ord)
q � F̃ (ord)

q )

where the corresponding free energies are given as

(5.35) F (ord)
q = U(ord) � 1

�
Sq; F̃ (ord)

q = Ũ(ord) � 1

�
S̃(ord)
q :
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This is an important result, since it shows that the B-type relative entropy can be given

a physical meaning in terms of free energy di�erences. In other words, the B-type Tsallis

relative entropy plays the role of a generalized free energy distribution.

What is even more interesting is that the B-type relative entropy acquires this physical

interpretation when the equilibrium distribution is obtained by the maximization of the

Tsallis entropy with the �rst choice of the constraints i.e., ordinary probability. There-

fore, B-type relative entropy is the one associated with the �rst constraint i.e., ordinary

probability.

The question remains as to whether C-type Tsallis relative entropy can be given a

similar kind of physical meaning. The answer turns out to be positive. In order to see

this, I use

(5.36) �(Sq � �
∑
i

pi � �

∑
i p

q
i "i∑

j p
q
j

) = 0;

instead of the maximization of the functional in Eq. (5.30). The above functional explicitly

shows that we are now using escort distribution and escort averaging. This means for

example that the internal energy constraint is written as U(esc) =
∑

i p
q
i "i∑

j p
q
j

. The superscript

(esc) denotes that the calculations are made in terms of escort distribution. Proceeding in

a similar manner to Eqs. (5.31)-(5.33), I obtain, for the stationary equilibrium distribution

(5.37) p̃
(esc)
i = [1� (1� q)

�∑
i(p̃

(esc)
i )q

("i � Ũ(esc))]
1=(1�q)
+ [1 + (1� q)S̃(esc)

q ]�1=(1�q):

I then substitute the equilibrium distribution in Eq. (5.37) as the prior r into the C-type

relative entropy expression given by Eq. (5.13) and see that it can be written as

(5.38) Iq[pkp̃(esc)] =
�̂∑

i(p̃
(esc)
i )q

(F (esc)
q � F̃ (esc)

q )

where the corresponding free energies are given as
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(5.39) F (esc)
q = U(esc) � 1

�̂
Sq; F̃ (esc)

q = Ũ(esc) � 1

�̂
S̃(esc)
q :

The term �̂ is equal to

(5.40) �̂ = �

∑
i(p

(esc)
i )q∑

j(p̃
(esc)
j )q

:

Therefore, I can state that the C-type relative entropy plays the role of a generalized

free energy distribution only if the Tsallis entropy is maximized with third constraint i.e.,

escort distribution.

In summary, the B-type relative entropy is the relative entropy compatible with the

ordinary probability de�nition, whereas the C-type relative entropy is compatible with the

escort distribution [67].

The aforementioned connection between the Tsallis relative entropies and the con-

straints sheds new light on the generalization of the nonadditive S-theorem, i.e., the

generalization of the Tsallis entropy to the open systems. The nonadditive S-theorem

in Eq. (5.17), which is the main ingredient for the nonadditive generalization of the S-

theorem requires the B-type Tsallis entropy. This relative entropy is the one compatible

with the ordinary distribution. In other words, the generalization of the Tsallis entropy

to open systems in the framework of the S-theorem is achieved not by using escort dis-

tribution but ordinary probability distribution. This is against the common belief in the

literature that one needs escort distribution for all practical purposes when one uses the

Tsallis entropy [19].

It is even more interesting to note that the ordinary S-theorem is based on turning

the ordinary reference distribution into the corresponding escort distribution, where the

exponent of the escort distribution is obtained through an energy renormalization pro-

cedure. Therefore, the ordinary S-theorem due to Klimontovich is based on the use of

ordinary BG entropy, escort distribution and energy renormalization. When one adopts

nonadditive Tsallis entropy, one is forced to use ordinary probability instead of the escort
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distribution, since nonadditive Tsallis entropy is already a one parameter generalization of

BG entropy that leaves no room for the use of the escort distribution. On the other hand,

BG entropy is not general enough to handle open systems by itself, so it needs the escort

distribution. In both additive and nonadditive S-theorem however, the renormalization of

mean energies is needed.

One might ask whether it is not possible to obtain a nonadditive generalization of

the S-theorem by using the C-type relative entropy, reviving the possibility of basing the

Tsallis formalism on the use of the escort distribution again. This has been tried by Rinat

G. Zaripov [58]. In order to assess the value of his work, I will brie
y review it here.

Zaripov [58] begins by the maximization of the following functional

(5.41) �(Sq � �
∑
i

pi � �
∑
i

pqi "i) = 0:

By this variation, he obtains the equilibrium distribution. Then, he considers the equality

of the mean energies in a manner similar to Eq. (4.18), but the averaging is done by

using the unnormalized escort distribution

(5.42)
〈
Uq
ef f

〉
=

∑
i

pqi "i :

Zaripov is �nally able to derive a new nonadditive renormalized entropy expression in terms

of C-type Tsallis relative entropy i.e.,

(5.43) Rq(pkr̃) = �Iq[pkr̃ ]:

Naturally, this nonadditive renormalized entropy is also positive for q values greater than

zero as the nonadditive renormalized entropy derived previously and given by Eq. (5.17).

A close inspection of Eqs. (5.41)-(5.43) shows that the work of Zaripov is 
awed in

some serious aspects. First of all, the inspection of Eq. (5.41) shows that Zaripov uses

the second constraint for the internal energy when he maximizes the Tsallis entropy. On

the other hand, in the same equation, he keeps the ordinary normalization condition. This
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procedure is tantamount to saying that his mean value expressions are not normalized at

all, as explained in Chapter 2. Indeed, this point surfaces again in Eq. (5.42). Then, he

ends up with Eq. (5.43), which is a nonadditive renormalized entropy expression written

in terms of the C-type relative entropy. This is not consistent, since he obtained the

maximization of the Tsallis entropy in Eq. (5.41) and average energy in Eq. (5.42) with

the second constraint. On the other hand, he ended up in C-type relative entropy, which is

the Tsallis relative entropy associated with the escort distribution. In other words, Zaripov

was able to obtain an expression for the nonadditive renormalized entropy in terms of the

escort distribution without using the escort distribution itself. Therefore, since the work

carried out by Zaripov su�ers from aforementioned inconsistencies, it has no sound basis.

Moreover, the thermodynamic stability criterion [65] is not invoked so that Zaripov

considers that the S-theorem cannot be generalized to the region q < 0 in the case of

the Tsallis nonadditive entropy. In addition, the one of the most important result of this

generalization scheme misses his attention, since the connection with the problem of con-

straints has not been addressed in his work. This is easy to understand, since the relation

between the nonadditive relative entropies and the constraints has been established in

Ref. [67] four years after the publication of Ref. [58].

Finally, it is worth remarking that the letter S in the S-theorem stands for \self-

organization", not entropy. The renormalized entropy (additive or nonadditive) expression

orders the entropies in such a way that one has a more ordered state (i.e., decrease in

entropy) as the control parameter increases while the system is receding from equilibrium.

This decrease of entropy on ordering is called self-organization by Haken [52] and the

renormalized entropy can be considered as a measure of self-organization for open systems.

Due to this feature, the (additive) S-theorem has been used in many numerical models

depending on a control parameter, such as the logistic map [68], heart rate variability

[69, 70] and the analysis of electroencephalograms of epilepsy patients [71]. I hope

that in the future the nonadditive S-theorem as a complexity measure can be applied to

numerical cases such as logistic map or EEG signal analysis as its additive counterpart

has been used.
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5.4. Application to the Modi�ed Van der Pol Oscillator

As an illustration of the nonadditive S-theorem, I revisit the modi�ed Van der Pol

oscillator studied in Chapter 4, but this time with the nonadditive S-theorem. In order

to do this, I need to calculate the nonadditive renormalized entropy, which is equal to

-Kq[pkr̃ ]. Therefore, I calculate the nonadditive relative entropy Kq[pkr̃ ], taking also the

renormalization of energy into account to obtain the nonadditive renormalized entropy.

I �rst assume that the underlying mechanics (i.e., Fokker-Planck equation) does not

change, so that I can use the same distribution functions obtained in Chapter 4.

Using the explicit form of the nonadditive relative entropy Kq[pkr̃ ], which can be

obtained by the combination of Eqs. (5.13) and (5.17), I calculate, after some algebra,

(5.44) Rq(pkr̃) =
1

1� q

1∫
0

dEpq �
1∫
0

dEr̃ q +
1

q � 1

1∫
0

dEpr̃ q�1 +

1∫
0

dEpr̃ q�1

where I have written the equations in the continuous domain, with integrals instead of

summations. The �rst integral on the right-hand side is calculated as

(5.45)

∫ 1

0

dEpq =

∫ 1

0

dE(
2b

�D
)q=2e�bqE

2=2D = (
2b

�D
)q=2(

D�

2bq
)1=2

and the second integral is

(5.46)

∫ 1

0

dEr̃ q =

∫ 1

0

dE(
�b

2D
)q=2e�

p
�b
2D

qE =
1

q
(
�b

2D
)(q�1)=2:

The third and fourth integrals are the same form and can be calculated by completing the

squares. The last integral is

∫ 1

0

dEpr̃ q�1 =

∫ 1

0

dE(
2b

�D
)1=2(

�b

2D
)(q�1)=2e�(q�1)(

�b
2D

)1=2Ee�
bE2

2D

=
2

�
(
�b

2D
)q=2e(q�1)

2 �
4

√
�D

2b
er f c(

p
�

2
(q � 1))(5.47)

where the complementary error function er f c(x) is
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(5.48) er f c(x) = 1� er f (x) =
2p
�

1∫
x

e�t
2

dt:

Substituting Eqs. (5.45)-(5.47) into Eq. (5.44), I �nally obtain the nonadditive renor-

malized entropy expression

Rq(pkr̃) = Sq(p)� Sq(r̃) =
1

(1� q)
((

2b

�D
)q=2

√
�D

2bq
)� 1

q
(
�b

2D
)(q�1)=2 +

(
q

q � 1
)

2

�
(
�b

2D
)q=2e(q�1)

2 �
4

√
�D

2b
er f c(

p
�

2
(q � 1)):(5.49)

The nonadditive renormalized entropy expression above is always negative for positive

values of nonadditivity parameter q, i.e.,

Rq(pkr̃) < 0:(5.50)

In Figs. 5.1 and 5.2, I plot the nonadditive renormalized entropy for some particular values

of the intensity of the random source D and nonlinear friction coe�cient b as a function

of the nonadditivity parameter q. It is always negative as expected [72]. Moreover, it

attains the value �0:05 as q becomes 1 independent of the intensity of random force D

and nonlinear friction coe�cient b. Note that this is exactly the value we obtained by

using ordinary additive renormalized entropy given by Eq.(4.25) in Chapter 4.

Although the above treatment of the modi�ed Van der Pol oscillator is correct as

far as nonadditive open systems are considered, another possibility is to change underly-

ing dynamics using the Fokker-Planck equation. The modi�ed Van der Pol oscillator in

Chapter 4 was based on the following Fokker-Planck equation

(5.51)
@f (E; t)

@t
=

@

@E
(DE

@f (E; t)

@t
) +

@

@E
[(a + bE)Ef (E; t)]:

This results in the stationary solutions of the exponential form given by Eq. (4.12).

However, a full nonadditive treatment must naturally based on the stationary distributions
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Figure 5.1. The nonadditive renormalized entropy versus the nonadditiv-

ity parameter q, where the intensity of the random source is D=50 and

nonlinear friction coe�cient is b=0.05.

Figure 5.2. The nonadditive renormalized entropy versus the nonadditivity

parameter q, where the intensity of the random source is D=5 and nonlinear

friction coe�cient is b=20.

of q-exponential form. This is usually succeeded by changing the dynamics so as to

be described by the nonlinear Fokker-Planck equation as we have seen in Chapter 3

[73, 74, 39]. However, there is a more elegant way to obtain stationary distributions of q-

exponential form. One �rst notes that the modi�ed Van der Pol oscillator used previously

corresponds to the following equation
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(5.52)
:
v = �x + f (E; u1; u2)v + ��

where the function f (E; u1; u2) is given by

(5.53) f (E; u1; u2) = �u1 � 2u2E:

The term E is the energy of the harmonic oscillator and the u's are the control parameters.

The noise term and � are equal to ��(t) = y(t) and � =
p

2D, respectively. If I also

choose the control parameters as u1 = a and u2 = b=2, I exactly obtain the modi�ed Van

der Pol oscillator equation used by Klimontovich. However, this modi�ed oscillator has a

more general solution i.e.,

(5.54) f0(E) = C exp(
2

�2

∫
dEf (E; u1; u2)):

The function f (E; u1; u2) is quite arbitrary and can be changed to another expression

as long as the new expression can be written in terms of the energy E and the control

parameters. This point is crucial in understanding the modi�ed Van der Pol oscillator

since one can instead choose

(5.55) f (E; u1; u2) =
�u1 � 2u2E

1 + (1�q)
D

(u1E + u2E2)
:

This new choice of the function f (E; u1; u2), through Eq. (5.54), results in the following

stationary distribution

(5.56) f0;q(E) = C exp2�q(�aE + 1
2
bE2

D
)

where C is the normalization constant and the control parameters are again written as

u1 = a and u2 = b=2. The q-exponential is de�ned by
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(5.57) expq(x) = [1 + (1� q)x ]
1

1�q :

In order to assess the importance of the expression in Eq. (5.56), it su�ces to remember

that p(1) / exp(2�q)(�x). Therefore, the corresponding equilibrium distribution associated

with zero value of the control parameter is

(5.58) rq(E) = A exp2�q(�
E

D
):

The normalization constant A can be found easily by integration and is equal to A = 
q
D

for q values between 0 and 1. Therefore, the equilibrium distribution function is given by

(5.59) rq(E) =

q

D
exp2�q(�
E

D
)

for 0 �q< 1. Now, I increase the control parameter to a value di�erent from zero and

create nonequilibrium state in the system. In Van der Pol oscillator, the threshold of

generation is de�ned as the state when feedback parameter af is equal to 
. Then,

according to Eq. (4.9), a=0. Therefore, the distribution function for this case can be

written as

(5.60) pq(E) = B exp2�q(�bE2

2D
):

The normalization constant B can be calculated by using the transformation
√

(1�q)b
2D

E =

x . Having done this, the normalization constant is found as

(5.61) B =

√
(1� q)b

2D
(

∫ 1

0

dx(1 + x2)
1

q�1 )�1:

The integral above can be evaluated by changing the variable x2 to u, so that

(5.62) B =

√
2(1� q)b

D
(

∫ 1

0

duu�1=2(1 + u)
1

q�1 )�1:
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This last integral can be calculated by using the following integral

(5.63)

∫ 1

0

duu��1(1 + �u)�� = ���B(�; � � �)

where B(a; b) denotes the incomplete Beta function for jarg�j < � and Re� > Re� > 0.

Finally, the distribution function pq is given by

(5.64) pq(E) =

√
2(1� q)b

D
[B(

1

2
;

1

1� q
� 1

2
)]�1[1 + (1� q)

b

2D
E2]

1
q�1 :

Moreover, I observe that the renormalization of energies i.e., Eq. (5.6) becomes

(5.65)

∫ 1

0

dEEr̃q(E) =

∫ 1

0

dEEpq(E):

In order to solve the integral on the right hand side above, I make the transformation√
(1�q)b
2D

E = x and obtain

(5.66)∫ 1

0

dEEpq(E) =

√
2(1� q)b

D
[B(

1

2
;

1

1� q
� 1

2
)]�1(

2D

(1� q)b
)

∫ 1

0

dxx(1 + x2)
1

q�1 :

Next, I make the transformation x2 = u so that

(5.67)

∫ 1

0

dEEpq(E) =

√
2(1� q)b

D
[B(

1

2
;

1

1� q
�1

2
)]�1(

D

(1� q)b
)

∫ 1

0

du(1+u)
1

q�1 :

Changing the variable 1 + u to v , I �nally obtain

(5.68)

∫ 1

0

dEEpq(E) =
√

(1� q)[B(
1

2
;

1

1� q
� 1

2
)]�1

√
2D

bq2

for 0 <q� 1. For the integral on the left of Eq. (5.65), I make the transformation

1 + (1� q) 


D̃
E = x in order to get
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(5.69)

∫ 1

0

dEEr̃q(E) =
D̃

(2q � 1)


for 1
2
�q< 1. Therefore, Eq. (5.65) becomes

(5.70) D̃ = (2q � 1)

√

(1� q)[B(
1

2
;

1

1� q
� 1

2
)]�1

√
2D

bq2

for 1
2
�q< 1. Therefore, the nonadditive renormalized entropy is calculated as

(5.71)

Rq[pkr̃ ] = (1�q)�1(
2(1� q)b

D
)(q�1)=2[B(

1

2
;

1

1� q
�1

2
)]�qB(

1

2
;

q

1� q
�1

2
)�(1�q)�1qq
q�1

D̃1�q

(2q � 1)

for 1
2
�q< 1, where D̃ is given by Eq. (5.70). The nonadditive renormalized entropy

expression above is always negative for positive values of nonadditivity parameter q i.e.,

Rq(pkr̃) < 0 as before since it is again the negative of the B-type Tsallis relative entropy

together with renormalization of the corresponding mean energies. I plot the nonadditive

renormalized entropy in Eq. (5.71) for some particular values of the intensity of the

random source D and nonlinear friction coe�cient b in Figs. 5.3 and 5.4. This nonadditive

renormalized entropy too attains the value �0:05 as q becomes 1 , independent of the

intensity of random force D and nonlinear friction coe�cient b.

The most important di�erence in changing the underlying dynamics so that the sta-

tionary distribution is of the q-exponential form is the con�nement of the q values to a

range between 0.5 and 1. If one uses a linear Fokker-Planck equation with Tsallis entropy,

the nonadditivity index q can take any value without limitations. However, the change in

the dynamics so as to make it nonlinear, results in some privileged q values. This seems

to be a general feature whenever one studies physical systems depending on a control

parameter [76, 77, 78]. However, whether these q values can form an equivalence class

or not is important. There is no answer to this question yet. I hope that in the future

these multitude of q values can be generalized under one main idea.
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Figure 5.3. The nonadditive renormalized entropy with q-exponential versus

the nonadditivity parameter q, where the intensity of the random source is

D=50 and nonlinear friction coe�cient is b=0.05.

Figure 5.4. The nonadditive renormalized entropy with q-exponential versus

the nonadditivity parameter q, where the intensity of the random source

D=2 and nonlinear friction coe�cient b=70.
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CHAPTER 6

NONADDITIVE GENERALIZATION OF KLIMONTOVICH'S S-THEOREM IN OPEN

SYSTEMS WITH INCOMPLETE STATISTICS

Many di�erent entropy measures such as R�enyi [13], Sharma-Mittal [14] and Tsallis

measures [11] have been proposed in order to generalize BG entropy. All these entropy

measures are di�erent from one another in fundamental ways. For example, Tsallis entropy

measure is nonadditive, whereas R�enyi measure is additive. Although both Tsallis and

Sharma-Mittal measures are nonadditive, the Tsallis entropy is one-parameter generaliza-

tion of the BG entropy whereas Sharma-Mittal entropy is a two-parameter generalization

of the BG entropy. Despite their di�erences though, all these entropy measures share a

common feature in that they are all based on the assumption of complete statistics, which

is even shared by the entropy measure they claim to generalize i.e., BG entropy. The as-

sumption of complete statistics implies that all states regarding the system are countable

and known completely by us. We have full knowledge of the interactions taking place in

the system of interest, thereby implying the ordinary normalization condition
∑

i pi = 1.

However, this scenario is challenged in some cases of interest since one cannot obtain

all the information regarding the system under investigation in these particular situations.

One such possibility can be mentioned when confronted with fractal phase spaces [4, 5].

One can then have singularities and unaccessible points, that renders the assumption of

complete statistics useless. Moreover, even when one knows all the states, one might

not be able to calculate the probability distribution exactly corresponding to these states.

This case too requires a new approach based on the incompleteness of description.

Recently, Wang [12] proposed a new nonadditive entropy based on Tsallis entropy

by replacing the complete normalization condition with an incomplete one depending on

a free positive parameter q. This new framework is called the formalism of incomplete
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statistics (IS). The parameter q plays the role of Hausdor� dimension divided by the topo-

logical dimension of the phase space when IS formalism is considered for nonequilibrium

systems evolving in hierarchically heterogeneous phase space, connecting the concept of

information and the topological dimension of some fractal sets [79]. However, another

interpretation of this parameter is related to the neglected interaction. When no interac-

tion is neglected, the parameter q becomes equal to unity, thereby reducing the results of

IS formalism to those of complete statistics described by BG entropy. This idea can be

traced back to A. R�enyi, who used it for the information loss in the case of incomplete

statistics although he did not pursue it in the framework of a generalized thermostatistics

[80].

In the next section, I will outline the IS formalism in general and list some of its

properties. The generalization of IS entropy to open systems through S-theorem will be

realized in section 6.2.

6.1. Incomplete Statistics

The point of departure of the IS formalism is the nonadditive Tsallis entropy [11]

(6.1) STsal l is
q (p) =

∑W
i pqi �

∑W
i pi

1� q

where pi is the probability of the system in the ith microstate, W is the total number

of the con�gurations of the system. Note that Boltzmann constant k is set to unity

throughout the paper. The entropic index q is a real number, which characterizes the

degree of nonadditivity since Tsallis entropy obeys the following pseudo-additivity rule:

(6.2) Sq(A + B)=k = [Sq(A)] + [Sq(B)] + (1� q)[Sq(A)][Sq(B)]

where A and B are two independent systems i.e., pi j(A+B)=pi(A)pj(B). Obviously,

this formalism assumes that we have complete access to all random variables since the

summation in Eq. (6.1) is over the total number of con�gurations W . This assumption

also lies at the center of the normalization of probability distribution, since it considers
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that all the information relevant to the physical system under consideration is accessible

to us. On the other hand, IS formalism challenges this issue since a complete description

of a physical system requires the determination of exact Hamiltonian and exact solution

of the equations of motion associated with the Hamiltonian. However, it is possible in

practice that we may not know analytically all the interactions, which must appear in the

relevant Hamiltonian. This failure in our knowledge of exact Hamiltonian results in the

incompleteness of the countable states. If this is the case, the ordinary normalization

of the probability distribution will not hold and must be avoided. This observation lies

at the heart of IS formalism since Wang proposes to replace the ordinary i.e., complete

normalization
∑W

i pi = 1 with the incomplete normalization given by

(6.3)

w∑
i

pqi = 1

where w denotes the states accessible to us. Since these states do not now form a

complete set, w can be greater or smaller than the real number of all possible states. The

incompleteness parameter q is positive and can be considered as a measure of neglected

interactions. When all the interaction is taken into account, it is equal to 1, recovering

the ordinary normalization. As a result of incomplete normalization, the expectation value

of an observable Ô is consistently given by

(6.4)
〈
Ô

〉
=

w∑
i=1

pqi Oi :

The incomplete normalization given by Eq. (6.3) enables one to write a new entropy

based on incomplete statistics whose point of departure is Tsallis entropy in Eq. (6.1).

This new entropy expression reads

(6.5) Sq(p) =
1�∑w

i pi
1� q

:

The stationary equilibrium distribution for IS entropy in the canonical case can be found

by applying the Lagrange method
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(6.6) �(Sq +
�

1� q

w∑
i=1

pqi � ��

w∑
i=1

pqi "i) = 0:

The resulting canonical equilibrium distribution [12] in IS formalism is then given by

(6.7) peqi = [1� (1� q)�"i ]
1=(1�q)

apart from normalization. The energy of the ith microstate is denoted by "i where the

Lagrange multipliers are denoted by � and �. However, it is easy to verify that the

canonical equilibrium distribution given by Eq. (6.7) is not invariant under the uniform

translation of the energy parameter "i . Moreover, the Lagrange multiplier � is not identical

with the inverse temperature [81, 82]. These di�culties are easily overcome by the

maximization of the IS entropy in Eq. (6.5) as follows

(6.8) �(Sq � �

w∑
i=1

pqi � �

w∑
i=1

pqi "i) = 0;

which results

(6.9) peqi = [1� (1� q)q�("i � Uq)=

w∑
j=1

pj ]
1=(1�q)

where Uq =
∑w

i=1 p
q
i �i is the internal energy and the normalization constant is not explicitly

written. This canonical equilibrium distribution is invariant under uniform translation of

energy parameter and the Lagrange multiplier � is identical with inverse temperature [82].

One important connection between IS formalism and the incompleteness parameter

q emerges when one considers the self-similar fractal phase-space. For illustration, I

consider the Sierpinski carpet shown in Fig. 6.1. The Sierpinski carpet can be obtained

by imagining a full square of length l and then continue to divide it into three at equal

lengths i.e., l=3 and remove the central square. Therefore, in the �rst iteration C(1) for

example, I will have 8 squares, each with a surface area of l2=32. At kth iteration, the
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Figure 6.1. The Sierpinski carpet.

side of the squares will be l=3k and the total number of squares will be equal to 8k . The

total surface after k-iteration will be given by

(6.10) Sk = Wksk = l2(
8

9
)k

where Wk denotes the total number of squares after k-iteration and sk denotes the surface

of each square after k-iteration. If the segments do not have the same size, I can generalize

the Eq. (6.10) as

(6.11) Sk =

Wk∑
i=1

sk(i):

I then suppose that the density of state is identical everywhere on the segments and

the dynamics in phase-space is quasi-ergodic i.e., every point on the segments is equally

visited.

The classical probability de�nition is de�ned in terms of relative frequency of visits of

each point so that it reads

(6.12) pi =
sk(i)

Sk

;
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i.e., the surface of each square after the kth iteration divided by the total surface after

kth iteration. This de�nition is even normalized as can be seen using Eq. (6.12) together

with Eq. (6.11). However, as the number of iterations increases, this probability de�nition

will go to zero. This means that all probabilities will be null. In short, this probability

de�nition makes no sense. Therefore, I de�ne a new probability de�nition as

(6.13) pi =
sk(i)

l2

where the two comes from the carpet being two dimensional in Euclidian space i.e., its

topological dimension d = 2. Then, I write

(6.14)

Wk∑
i=1

(
sk(i)

l2
)df =2 = 1

where the fractal dimension df is equal to ln8=ln3 for the Sierpisnki carpet. The sk again

denotes the surface of each square after k-iteration and is equal to l2=9k . Therefore, this

new probability de�nition too is normalized

(6.15)

Wk∑
i=1

(
sk(i)

l2
)df =2 = 8k(

1

3k
)df = (

8

3df
)k = 1

by using the de�nition of fractal dimension 8 = 3df . A comparison with Eq. (6.3) shows

that

(6.16) q = df =d:

This relation is very important and is worth remark. First of all, it should be noted that

the sum is over all the Wk segments at the kth iteration and this does not mean the sum

over all possible states (the black portion removed after each iteration). Moreover, if the

fractal dimension df is larger than the topological dimension d , it means that the system

has more states than Wk . When it is the case that the fractal dimension df is less than the

topological dimension d , this means that the system has less states than Wk . Whenever
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the fractal and topological dimensions coincide, we have the complete information about

the system, thereby having the incompleteness parameter q equal to 1.

The comment above begs some explanation. In order to elucidate the remark made

above, let us de�ne 
, which is equal to

(6.17) 
 =

Wk∑
i=1

pi :

This de�nition of 
 denotes the incompleteness since it would be equal to 1 for a statistics

based on complete information. Therefore, any deviation from 1 in the value of 
 is an

indication of the incompleteness of the underlying statistics. Then, I can write

(6.18)

Wk�1∑
i=1

pqi + (
�
Wk�1∑
i=1

pi)
q = 1

for any 0 < pi < 1. In order to illustrate the relation between the incompleteness

parameter q and the incompleteness measure 
, I consider an incomplete probability

distribution given by

(6.19) fpi=1:::5g = f0:10; 0:15; 0:20; 0:25;
� 0:70g:

The Fig. 6.2 shows that 
 > 1 when q > 1 and 
 < 1 when q < 1. It is indeed in this

sense that the parameter q is called incompleteness parameter.

The connection between the incompleteness parameter and the fractal dimension df

was �rst found in Ref. [79] for monofractals (i.e., the segments are of the same size) and

later has been generalized to multifractals with segments of variable size [83].

6.2. Open Systems with Incomplete Statistics

Gibbs' theorem established the fact that the entropy corresponding to the canonical

distribution is maximum and it and can be taken as an indication for the importance of the

canonical ensemble. However, Gibbs' theorem relies on two major assumptions. Firstly,

the system under consideration is governed by complete statistics, which is described by
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Figure 6.2. The dependence of 
 on q for the incomplete distribution given

by Eq. (6.19).

BG measure. Due to this assumption, Gibbs' theorem is limited to the cases, where the

stationary equilibrium distribution is exponential. Second, Gibbs' theorem is limited to

the cases, where the average internal energy is kept constant. Our aim in this paper

is to generalize Gibbs' theorem for open systems with incomplete statistics. It is highly

probable indeed that one cannot write all the interactions governing such a system since

open systems are subject to many interactions whose equations of motion are not fully

solvable. This in turn will result in only some states being accessible to us, so the use

of incomplete statistics is required. Moreover, an open system might have a metastable

stationary state described by an inverse power law as IS suggests, instead of an exponential

as Klimontovich assumed [45, 46, 47, 48].
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All these considerations requires us to generalize Gibbs' theorem for open systems with

incomplete statistics. In order to do this, I �rst de�ne a new quantity named renormalized

entropy RIS
q as

(6.20) RIS
q � Sneq

q (r)� S̃eq
q (p̃eq):

The generalization of Gibbs' theorem is now equivalent to showing that renormalized

entropy expression above is negative i.e., RIS
q < 0, since this implies that S̃eq

q > Sneq
q .

However, I know that this cannot be proved on the basis of ordinary Gibbs' theorem,

since it compares distributions with the same mean energy which is not the case for open

systems. Therefore, Klimontovich proposed a generalization of Gibbs' theorem for open

systems with complete statistics by equating the mean energies of the equilibrium and

nonequilibrium states [45, 46, 47, 48]. Due to this e�ective mean energy equalization, I

denote the equilibrium entropy by a tilde since this is not the original equilibrium entropy

but the one obtained after using the e�ective mean energy equalization. Two distinct

incomplete probability distributions i.e. p̃eq and r in Eq. (6.10) denotes the renormalized

equilibrium and nonequilibrium probability distributions respectively. The corresponding IS

entropy expressions are denoted by S̃eq
q (p̃eq) and Sneq

q (r). From now on, I will drop the

subscript from the equilibrium probability distribution so that it should be understood that

the probability distributions p and p̃ denote the ordinary and renormalized equilibrium

distributions, respectively. The renormalized equilibrium probability distribution p̃ and

nonequilibrium probability distribution r obey the incomplete normalization summarized

by Eq. (6.3) i.e.,
∑w

i p̃
q
i =

∑w
i r

q
i = 1, which is implicity taken into account in the

de�nition of IS entropy given by Eq. (6.5).

In order to proceed, I need to de�ne e�ective mean energy in terms of the equilibrium

state associated with the incomplete statistics. This can be achieved by de�ning

(6.21) Uef f � � lnq pi

where the q-logarithm is simply de�ned as
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(6.22) lnq(x) =
x1�q � 1

1� q
:

This de�nition of e�ective mean energy is central to our generalization and therefore

requires some explanation. The e�ective mean energy is de�ned in terms of the un-

normalized equilibrium distribution. In this sense, if one applies this de�nition to the

unnormalized equilibrium distribution given by Eq. (6.7) above, one sees that Uef f = �"i .

The application of the e�ective mean energy to the canonical equilibrium distribution in

Eq. (6.9) however results in Uef f = q�("i � Uq). This observation explains why it is

called e�ective mean energy since it is always proportional to the multiplication of the

Lagrange multiplier � associated with the internal energy constraint and the energy of

the ith microstate. The calculations in this paper are general in the sense that both equi-

librium distributions can be used. However, a consistent treatment would be through the

adoption of the canonical equilibrium distribution in Eq. (6.9) due to its explicit depen-

dence on temperature through �. The open systems are usually treated by using a control

parameter, which controls the matter or energy in
ux into the system due to its inter-

action with the environment. In this sense, the state with the zero value of the control

parameter is the equilibrium distribution and all the other stationary states with control

parameter values di�erent from zero correspond to nonequilibrium distributions. Having

clari�ed this important issue, I can rewrite the equalization of e�ective mean energies of

the two states as

(6.23) hUef f i(eq) = hUef f i(neq)

where superscripts 1 and 2 denote the renormalized equilibrium and ordinary nonequilib-

rium states respectively so that the averages must be taken in terms of p̃qi and r qi . The

Eq. (6.13) can be explicitly written as

(6.24)

w∑
i=1

p̃qi Uef f =

w∑
i=1

r qi Uef f :
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The substitution of the e�ective mean energy de�ned in Eq. (6.21) into Eq. (6.24) yields

(6.25)

w∑
i=1

p̃qi (
p1�qi � 1

q � 1
) =

w∑
i=1

r qi (
p1�qi � 1

q � 1
):

Due to the normalization i.e.,
∑w

i p̃
q
i =

∑w
i r

q
i = 1, the above equation can be rewritten

as

(6.26)

w∑
i=1

p̃qi p
1�q
i =

w∑
i=1

r qi p
1�q
i :

The probability distribution p̃ can be considered as the normalized and renormalized (i.e.,

e�ective mean energy equalization) counterpart of the ordinary equilibrium distribution p.

Therefore, I can substitute p̃qi =
pqi∑
i

pqi
into Eq. (6.26) and obtain

(6.27)

w∑
i=1

p̃i =

w∑
i=1

r qi p̃
1�q
i :

On the other hand, I can also obtain an explicit form of renormalized entropy de�ned by

Eq. (6.20) by substituting the IS entropy in Eq. (6.5) explicitly, which gives

(6.28) RIS
q =

1

(q � 1)
(

w∑
i=1

ri �
w∑
i=1

p̃i):

Making use of the equalization of the e�ective mean energies of equilibrium and nonequi-

librium states given by Eq. (6.27), we obtain

(6.29) RIS
q =

1

(q � 1)
(

w∑
i=1

ri �
w∑
i=1

r qi p̃
1�q
i ):

The �nal step in our treatment is to show that the renormalized entropy RIS
q is negative for

all positive values of the incompleteness parameter q. This can be achieved by rewriting

the above renormalized entropy expression as
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(6.30) RIS
q = �

w∑
i=1

ri [
(ri=p̃i)

q�1 � 1

q � 1
]:

A mathematical inequality [84], with the plausible assumption ri=pi � 0, states

(6.31)
(ri=p̃i)

q�1 � 1

q � 1
� 1� p̃i=ri ; q > 0:

Multiplying both sides of the above inequality with ri and summing over i , I obtain

(6.32)

w∑
i=1

ri
(ri=p̃i)

q�1 � 1

q � 1
�

w∑
i=1

(ri � p̃i); q > 0:

Comparing the inequality above with the expressions given by Eqs. (6.28) and (6.30), I

see that the above inequality takes the form

(6.33) �RIS
q � (q � 1)RIS

q ; q > 0:

Since the above inequality is valid only for q values greater than zero, it implies

(6.34) RIS
q � 0:

The equality holds only if the two distributions are the same. Since I assume that the

states under question are two di�erent states, one being renormalized equilibrium state

and the other being nonequilibrium state, I can drop the equality sign above. Moreover,

remembering the original de�nition of renormalized entropy in Eq. (6.20), I see that

(6.35) RIS
q = Sneq

q � S̃eq
q < 0 ) S̃eq

q > Sneq
q ;

i.e., the (renormalized) equilibrium entropy is greater than the nonequilibrium entropy

for open systems with incomplete statistics. Naturally, one recovers the result based on

complete statistics of BG entropy i.e., Seq > Sneq by taking the q ! 1 limit in Eq. (6.35).

In summary, one will have a more ordered state as the control parameter increases while
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the system is receding o� equilibrium. This decrease of entropy on ordering is called

self-organization by Haken [52] and the renormalized entropy RIS
q can also be taken as a

measure of self-organization for open systems described by IS.

By generalizing Gibbs' theorem for open systems described by IS formalism, I have

shown that the stationary equilibrium state obtained from IS is the state of maximum

entropy even in the presence of energy or matter in
ux. The treatment here can be

considered as a generalization of ordinary S-theorem (and of Gibbs' theorem for that

matter) developed by Klimontovich since the latter is a particular case of the former in

the q ! 1 limit. In this sense, the incompleteness is a more general framework since the

results assuming complete statistics can be obtained from IS even in the case of open

systems. This generalization of Gibbs' theorem is essential if one would like to understand

better the IS formalism. It is less likely that we will have complete knowledge of the system

as the interaction terms governing the system increase which would generally be the case

with open systems. Finally, we have shown that one obtains a more ordered state i.e., a

state of lesser entropy as the control parameter increases. In this sense, the renormalized

entropy expression obtained in this dissertation serves as a criterion of self-organization

[52] in open systems described by IS [85].
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CHAPTER 7

BOLTZMANN'S METHOD OF ORTHODES AND THE MICROCANONICAL

ENTROPY

In this chapter, I will outline the Boltzmann's method of orthodes and its importance

for the microcanonical ensembles. The main di�erence between this chapter and the

previous ones is that the Boltzmann's method of orthodes is applicable only to equilib-

rium systems. In fact, Boltzmann's method of orthodes [86] is founded on the work of

Helmholtz [87]. He attempted to prove thermodynamics relations for systems at equilib-

rium based solely on mechanistic arguments, without invoking probabilistic arguments. A

good review of Boltzmann's method of orthodes can be found in Ref. [88].

7.1. Boltzmann's Method of Orthodes

One of the main disputes about the foundation of statistical mechanics is whether it

can be founded on purely dynamical laws or purely mechanistic arguments. Many scientists

and philosophers alike hold the view that a statistical treatment is necessarily based on

the law of large numbers and the thermodynamic limit even though each particle forming

the system conforms to Newtonian dynamics. Others advocate the view that mechanical

concepts such as ergodicity and mixing su�ce for a sound foundation for all statistical

physics. Historically, the origin for the latter can be traced back to Helmholtz [87] and

Boltzmann [86]. The core of their research programme consisted of proving the validity

of the heat theorem or combined �rst and second laws of thermodynamics,

(7.1) dS =
dE + PdV

T

for the equilibrium on purely mechanical grounds. Helmholtz succeeded in realizing this

goal for the one-dimensional case. It was �nally Boltzmann who generalized Helmholtz's

result for all dimensions by relying on the concept of ergodicity. The ergodicity is one of
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the central concepts in the foundations of statistical physics. However, its relevance to

statistical physics and its provability is still at debate. Helmholtz showed that the heat

theorem is satis�ed if the generating function for the exact di�erential is given by

(7.2) S(E; V ) = log 2

∫ x+

x�

dx

h

√
2m(E � '(x; V )):

Here, the notation x� stands for the turning points,The potential energy must be U-

shaped since Helmholtz theorem applies only to monocyclic systems. These systems are

assumed to be such that there is one periodic trajectory per energy level. ' denotes the

potential energy. In this sense, harmonic oscillator is monocyclic whereas a particle inside

a double well is not. The temperature is de�ned in accordance with the equipartition

theorem and the pressure in accordance with the usual expression,

T
:

= 2 hKit(7.3)

P
:

= �
〈
@H

@V

〉
t

:(7.4)

The h�it denotes time average over one period of the orbit. Thus, I obtain a completely

mechanical description of equilibrium thermodynamics due to the Helmholtz theorem in

Eq. (7.2). This theorem has been recently generalized to any number of degrees of

freedom [89]. The importance of this result can be summarized as follows. First, it

provides the link connecting Hertz to Helmholtz-Boltzmann. Hertz initially employed

the idea that equilibrium thermodynamics is independent of the size of the system and

purely on mechanical arguments so that the main ingredient for both happened to be the

equipartition theorem and adiabatic invariance [90, 91].

The method of orthodes is simple and powerful. It gives us the equilibrium thermo-

dynamics through mechanical arguments only. Moreover, It does so without invoking the

thermodynamic limit so that it chooses the entropy expressions, that are compatible with

the systems of any size.
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This method of orthodes is not limited to microcanonical, canonical or grand canonical

entropies even though these entropies formed the major line of investigation for Boltz-

mann. This method is general and can be applied even to systems with inverse power law

equilibrium distribution as we will see in the next chapter. I consider Tsallis entropy in the

framework of the method of orthodes.

However, before proceeding to apply this method to Tsallis entropy, I use the method

of orthodes to present some results concerning the microcanonical entropy de�nition in

ordinary Boltzmannian context.

7.2. Method of Orthodes and the Microcanonical Entropy

Since the seminal work of Gibbs [3], there are two de�nitions of microcanonical entropy.

They are volume and surface entropies. In order to illustrate the de�nition of these two

distinct microcanonical de�nitions of entropy and the di�erence between the two, the ideal

gas serves as a good example. The ideal gas model is considered idealized in regards to its

two essential features First, it only takes into account the kinetic energies of the particles

composing it, thereby neglecting all the interactions between the particles. Second, the

atomic structure of the environment (e.g., container) is ignored, so that the role of the

environment is only to make particles of the ideal gas collide elastically with the idealized

surfaces.

As a result of these two idealizations, the Hamiltonian for the ideal gas is

(7.5) H =
1

2m

N∑
i=1

p2i

assuming that our ideal gas is composed of N particles and the notations m and pi denote

the mass and the momentum of each particle. The general expression of volume entropy

[92] is

(7.6) S�(E; V ) = log �(E; V );

where
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(7.7) �(E; V ) =
1

h3N

∫
H�E

d3p1:::d
3pNd

3q1:::d
3qN:

In accordance with the de�nition above, we see that the volume entropy is the logarithm

of the 6N-dimensional phase-space volume of the region enclosed by the constant energy

hyper-surface. The role of the constant h, with dimensions of action, in Eq. (7.7) is to

make the volume entropy dimensionless. The volume of the phase space associated with

the ideal gas described by the Hamiltonian in Eq. (7.5) is then calculated as [92]

(7.8) �(E; V ) = C3N

[
V

h3
(2mE)3=2

]N
where C3N is given as

(7.9) C3N =
�3N=2

�(3N
2

+ 1)
:

The �(x) in the denominator is the gamma function with the argument x . In order to

obtain the volume entropy, it su�ces to take the logarithm of the phase space volume

given by Eq.(7.8), which gives

(7.10) S�(V; E) = logA + N log V +
3N

2
logE

where A is a constant depending on h, m and N. The thermodynamics of the system can

be calculated by taking partial derivative of the volume entropy with respect to extensive

variables i.e., energy E and volume V . The �rst partial derivative evidently provides the

expression for the temperature i.e.,

(7.11)
1

T�

:
=

@ logS�(V; E)

@E
=

3N

2E
;

whereas the partial derivative of the volume entropy with respect to extensive variable V

provides the equation of state for the ideal gas,
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(7.12)

(
P

T

)
�

:
=

@ logS�(V; E)

@V
=

N

V
:

The subscript � indicates that these quantities are calculated by using the volume entropy.

The ideal gas model can also be studied by using surface entropy, however [92]. The

general de�nition of the surface entropy is given as

(7.13) S
(E; V ) = log 
(E; V )

where the function 
 is de�ned as

(7.14) 
(E; V ) =
1

h3N

∫
d3p1:::d

3pNd
3q1:::d

3qN�(E �H):

The symbol �(x) represents the Dirac delta function. In this sense, 
 represents the

phase-space volume of the in�nitesimally thin shell of constant energy E. In fact, this

de�nition of the quantity 
 is nothing but the density of states of the system at the

energy E. Assuming the smoothness of the hyper-surfaces of constant energy, one has

(7.15) 
(E; V ) =
@

@E
�(E; V ):

This is the explanation for the term \surface entropy", since 
 is equal to the derivative

of the volume entropy, that suggests it can be called \surface entropy". It is now easy to

see that, for ideal gases, the surface entropy and the volume entropy are related through

(7.16) S
(E; V ) = S�(E; V ) + log

(
3N

2E

)
:

The expressions for the temperature and equation of state for the ideal gas can be cal-

culated by making use of Eqs. (7.11) and (7.12), but this time through surface entropy

to get
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(7.17)
1

T


:
=

@ logS
(V; E)

@E
=

(
3N

2
� 1

)
1

E

and

(7.18)

(
P

T

)



:
=

@ logS
(V; E)

@V
=

N

V
:

Some remarks are in order: the surface entropy given by Eq. (7.16) is not equal to

the volume entropy obtained before i.e., Eq.(7.10) since the former includes some non-

trivial additional term depending on the energy and number of molecules of the ideal gas

under study. Comparison of Eqs. (7.12) and (7.18) shows that they result in the same

equation of state. The crucial point is to understand the equality of the volume and

surface entropies in the thermodynamic limit. In the thermodynamic limit, the extensive

properties of the systems such as energy become directly proportional to the size of the

system i.e., number of particles composing the ideal gas or volume of the container. Then,

the additional term in the surface entropy expression in Eq.(7.16) becomes a constant.

This shows that, for ideal gases, the volume and surface entropies are equivalent to one

another only in the thermodynamic limit.

Having noted the equivalence of surface and volume entropies occurring only in the

thermodynamic limit, it is important to understand the di�erence between the two re-

garding the equipartition theorem. The equipartition theorem states that each harmonic

term in the Hamiltonian contributes T=2 to the energy of the system. In ideal gas model,

the number of harmonic terms is 3N since we have N particles in three dimensional space.

Therefore, the total energy of the ideal gas must be equal to 3NT=2. Inspection of

Eqs. (7.11) and (7.17) shows explicitly that the volume entropy S� is consistent with

the equipartition theorem whereas the surface entropy S
 is not. The usual textbook

explanation of this point is again by invoking the concept of thermodynamic limit [92].

Since this limit presupposes the existence of many degrees of freedom i.e., large N values,

one is led to conclude that the di�erence between the Eqs. (7.11) and (7.17) is negligible.
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However, it should be noted that the volume entropy S� is consistent with the equipar-

tition theorem independent of the number of degrees of freedom. In order to assess the

importance of the equipartition theorem, I refer to the treatment of this subject due to

Khinchin [93]. According to him, I can rewrite the equipartition theorem as

(7.19)

(
2K

3N

)�1

=
@S�(E; V )

@E
:

If one agrees to name the quantity (2K
3N

)�1 as the temperature of the system under inves-

tigation, one immediately obtains the fundamental thermodynamic relation

(7.20)
1

T
=

@S�(E; V )

@E
=

1

T�
:

Note that this result is independent of number of degrees of freedom and does not need

the thermodynamic limit to be invoked at all. Further, it is not restricted to ideal gases.

Therefore it is very general and fundamental [93]. In fact this is one of the two main

reasons that led [90, 91] to choose the volume entropy as the entropic function and not

the surface entropy. The other reason is the adiabatic invariance of the volume entropy.

I �nally remark on the di�erence between these two forms of entropies as to whether

or not they are adiabatic invariant. Before proceeding, let us elucidate the meaning

of adiabatic invariance and its importance. A quantity is (mechanically) an adiabatic

invariant if it is constant under the slow variation of the external parameter (e.g., in the

ideal gas example, the external parameter is the volume V ). The concept of adiabatic

invariance is very useful in addressing thermodynamic behavior from a mechanical point of

view because quasi-static transformations, which are at the very heart of thermodynamic

theory, can be conveniently modelled as adiabatic transformations [89]. According to

thermodynamic theory, the entropy remains constant along quasi-static transformations

of thermally isolated systems. Therefore, our candidate expression of microcanonical

entropy should be an adiabatic invariant. It is a well established fact that, under the

assumption of ergodicity, the volume entropy is adiabatic invariant, whereas the surface
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entropy is not [94, 95]. However, in the thermodynamic limit for the ideal gas model, the

surface entropy is an adiabatic invariant even though it so in general.

7.3. Dynamical Derivation of the Boltzmann's Principle and the Volume Entropy

In this section, my main concern will be an alternative and recent dynamical derivation

of de�nition of entropy due to Bianucci et al. (their results will be refereed as BMWG

from now on since the full list of authors includes also Mannella, West and Grigolini) [96].

Their work may help us understand and appreciate the importance of volume entropy in

the context of equilibrium. The scope of the work carried out by BMWG in fact extends

to the nonequilibrium situations as well, since these authors �rst obtain a Fokker-Planck

equation, that can be used to study systems under both equilibrium and nonequilibrium

conditions. They derive the canonical distribution as the equilibrium state of their partic-

ular Fokker-Planck equation through dynamical arguments only. In spite of this broader

scope of their work, I will refer to their results only in aspects relevant to the equilibrium

state of the physical system under consideration. BMGW presents their main objective

very clearly at the beginning of their paper: they want to generalize the Boltzmann prin-

ciple only through dynamical arguments so as to include low dimensional systems into its

scope. What they consider as the Boltzmann principle is Eq. (7.13). In their work the

Boltzmann principle is derived dynamically rather than being assumed. This programme

was initiated by Khinchin, who thought it was possible to derive the Boltzmann princi-

ple purely on mechanical grounds to obtain the thermodynamic property of the physical

system under scrutiny. In order to establish a dynamical picture, which enables them

to derive the Boltzmann principle, BMWG adopts the following picture: they assume a

division of variables concerning the description of the physical system. The �rst group of

variables enables them to study the macroscopic properties of the system. These vari-

ables are associated with the system of interest, since they are the ones that are of main

importance as far as thermodynamic description of the system is considered. The second

group, in contrast to the former group, are called the irrelevant variables, since they are

associated with the microscopic description of the system. This division is essentially

tantamount to divide the system into two i.e., the system of interest and the booster.
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The word booster requires for some explanation since it is not a common term used in

the literature. The common practice in this area is to use the term \thermostat" for dy-

namical studies of statistical systems. However, concerning the aim of BMWG, the work

\thermostat" is misleading in two regards. First, the standard approach in the literature

assumes that the thermostat consists of in�nite number of degrees of freedom. In other

words, the word \thermostat" implies that the thermodynamic limit is already invoked.

However, the aim of BMWG is to obtain a generalized derivation of Boltzmann principle

independent of degrees of freedom. Second, the thermostats in standard treatment in

the literature are almost always placed initially in canonical equilibrium, which contradicts

with the objective of BMWG since they do not invoke canonical equilibrium but derive it

from dynamical arguments only. Because of these two important di�erences in approach,

these authors adopt the word \booster" instead of the ordinary term \thermostat". In

order to proceed, BMWG make the following assumptions. Although the results of these

authors are general in scope, when they study the equilibrium case and relevant expression

of temperature, they assume in particular that the system of interest is a linear oscillator.

They then assume that the booster can be studied through linear response theory of [97],

together with the assumption that the coupling parameter � between the booster and

the system of interest is su�ciently small. These two assumptions make a perturbative

treatment possible, which enables in turn the modulation of the system of interest by the

action of the booster. I will not enter here into a detailed discussion of these assumptions.

For the purposes of the present dissertation it will su�ce to mention that after employing

these assumptions together with projection method introduced by [98], BMWG �nally

derives the general form of Boltzmann principle which is given by

(7.21)
1

T
=

@S
(E; V )

@E
+ DCT

where T is calculated from the average kinetic energy and DCT denotes a correction term,

called by BMWG the dynamical correction term. This correction term is called dynamical

since it depends on the correlation function of the booster. This equation led them to
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conclude that they derived a general expression of the Boltzmann principle independent

of degrees of freedom. This dynamical correction term vanishes in the thermodynamic

limit. In other words, this general form recovers the ordinary Boltzmann principle in the

thermodynamic limit. This modern and complicated dynamical approach to the founda-

tions of the Boltzmann principle, based on projection method, linear response theory and

separation between booster and system of interest, seems however contrived once the

Equipartition Theorem is considered. By looking at Eq. (7.17) it appears evident that

the dynamical correction term stems because the surface entropy has been used instead

of the volume entropy by BMWG. In fact it is easily seen that:

(7.22) DCT =
@

@E
(S� � S
):

This also explains why DCT goes to zero in the Thermodynamic Limit. Artur Adib

[99] has the merit of having pointed this out in his paper entitled \Does the Boltzmann

principle need a dynamical correction?". Adib �rst notes that the Boltzmann principle

introduced by BMWG is written in terms of surface entropy. Then, he identi�es the

correction term of BMWG to be the result of the employment of surface entropy and is

not needed when one uses the volume entropy (to make a connection with the case of

ideal gas treated in Section 2, the correction term would be the additional term (�1=E)

that appears in Eq. (7.17)). Moreover, Adib numerically veri�es this result by using a

model of quartic oscillators. One might be curious as to whether the numerical models

of Adib and BMWG work under same assumptions i.e., they are equivalent and therefore

can justify a thorough comparison. It should be remarked that both models have �nite

correlation times and are ergodic. The main di�erence between the two is that the model

adopted by BMWG assumes a booster Hamiltonian depending on harmonic terms whereas

the model by Adib does not include any harmonic term. This absence allows Adib to tackle

the problem analytically and does not have any bearing as far as the justi�cation of the

comparison is considered. Based on his analytical calculations and numerical simulations,

Adib concludes that Boltzmann principle does not need a correction term if one employs
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volume entropy instead of surface entropy. The work of BMWG is important, because it

quanti�es the di�erence of surface and volume inverse temperatures (i.e., the dynamical

correction term) in terms of the system's correlation function.

In summary, these two forms of microcanonical entropy expressions i.e., volume and

surface entropies are not equivalent to one another in microscopic systems. Even though

they yield the same equation of state for the ideal gas treated in this section, the volume

entropy conforms the equipartition theorem and is adiabatic invariant independent of the

number of degrees of freedom, without restriction to ideal cases. On the other hand,

the surface entropy possesses these properties only in the thermodynamic limit i.e., when

N!1, and for ideal systems with quadratic Hamiltonian only (ideal gases and crystals).

Although I have limited our discussion to systems at equilibrium, it should be remarked

that the correct entropy is recently found to be the volume entropy even for the non-

equilibrium cases where the second law is proved through the volume entropy [100].

However, it is possible to prove that the second law is violated if one uses the surface

entropy [101].
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CHAPTER 8

BOLTZMANN'S METHOD OF ORTHODES AND THE TSALLIS ENTROPY

As I have explained in the previous chapter, Boltzmann's method of orthodes consists

of proving the validity of the heat theorem i.e.,

(8.1) dS =
dE + PdV

T

for the systems at equilibrium on purely mechanical grounds. Helmholtz showed that the

heat theorem is satis�ed if the generating function for the exact di�erential is given by

(8.2) S(E; V ) = log 2

∫ x+

x�

dx

h

√
2m(E � '(x; V ))

and the temperature T , the pressure P are de�ned by the equipartition theorem and the

time average of the relevant mechanical quantities, respectively as

T
:

= 2 hKit(8.3)

P
:

= �
〈
@H

@V

〉
t

:(8.4)

Here, the notation x� stands for the turning points, ' denotes the potential energy. The

potential energy must be U-shaped since Helmholtz theorem applies only to monocyclic

systems.

I now write the Tsallis distribution

(8.5) �(z ;E; V ) =
[1� �

�
(H(z ; V )� E)]��1

N

where N(E; V ) is the partition function, i.e., normalization. It is naturally equal to
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(8.6) N(E; V ) =

∫
dz [1� �

�
(H(z ; V )� E)]��1:

The parameter � satis�es hHi = E. Therefore, � is a function of E and V. The integration

is over the phase-space coordinate z = (q1; q2; :::; qf ; p1; p2; :::; pf ). The parameter � is

related to the nonadditivity parameter q through the following relation

(8.7) � =
1

1� q
:

V is an external parameter and can be taken as the volume for example.

It has been proved that the Tsallis distribution �(z ;E; V ) conforms to the equipartition

theorem [102, 103] i.e.,

(8.8) 2

〈
p2i
2m

〉
=

1

�
= T:

I also de�ne N̂

(8.9) N̂(E; V ) =

∫
dz [1� �

�
(H(z ; V )� E)]�:

It can be proved that [102]

(8.10) N̂(E; V ) = N(E; V ):

Now, I can continue to prove the orthodicity of the Tsallis ensemble described by Eq.

(8.5). In order to do this, I �rst take the partial derivative of N̂ with respect to E so that

(8.11)
@N̂

@E
=

∫
dz [1� �

�
(H � E)]��1[� @�

@E
(H � E) + �]:

The Eq. (8.11) can be rewritten as
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(8.12)
@N̂

@E
= �N @�

@E
hH � Ei+ N�:

Since hHi = E and N̂(E; V ) = N(E; V ), I obtain

(8.13)
@N̂

@E
= N̂� =

N̂

T
:

I then take the partial derivative of N̂ with respect to V

(8.14)
@N̂

@V
=

∫
dz [1� �

�
(H � E)]��1[

@�

@V
(E �H)� �

@H

@V
]:

The above equation can be rewritten as

(8.15)
@N̂

@V
= N

@�

@V
hE �Hi � N�

〈
@H

@V

〉
:

Since P =
〈�@H

@V

〉
, we �nally obtain

(8.16)
@N̂

@V
= N̂

P

T
:

The term dN̂ can be calculated as

(8.17) dN̂ =
@N̂

@E
dE +

@N̂

@V
dV:

The substitution of the Eqs. (8.13) and (8.16) on Eq. (8.17) yields

(8.18) dS =
dN̂

N̂
=

dE + PdV

T
:

This �nal result is of central importance, since it shows that the Tsallis ensemble is on

equal footing as the microcanonical, canonical and grandcanonical ensembles as far as

Boltzmann's method of orthodes i.e., heat theorem is considered.
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On the other hand, this result is surprising since it shows that the entropy associated

with the Tsallis ensemble is not q-logarithm of the distribution �(z ;E; V ) as held generally,

but with ordinary logarithm. Therefore, the Tsallis entropy for systems at equilibrium reads

(8.19) S(E; V ) = logN(E; V ):

Moreover, the Tsallis entropy satisfying heat theorem can easily be seen to be equal to

the R�enyi entropy SR

(8.20) SR =
1

1� �
log

∫
dz��

of order � = 1
q

, due to the important relation N̂ = N given by Eq. (8.10) [102, 103].

In summary, the Tsallis ensemble satis�es heat theorem as prescribed by the Boltz-

mann's method of orthodes and is on equal footing with other orthodes such as canonical

or grandcanonical ensembles in this regard. On the other hand, the associated entropy

to be used becomes the R�enyi entropy of the order 1
q

[104]. It is worth remark that all

these considerations apply to the use of the Tsallis entropy at equilibrium.
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CHAPTER 9

CONCLUSION

The recent theoretical and experimental progress in statistical physics has provided

many examples where the ordinary Boltzmann-Gibbs thermostatistics fails. Among such

examples, the systems with long-range interaction [105], self-gravitation [106] and fractal

behavior [107] can be cited. The failure of the Boltzmann-Gibbs thermostatistics can be

realized in many di�erent ways. For example, for the dynamical systems in fractal phase

space, the ordinary probability de�nition diverges. Therefore, they require a change in

the fundamental probability de�nition and normalization condition [79]. The failure can

also be shown by the limitations of the Boltzmann-Gibbs entropy de�nition itself. This

entropy is additive, and thus cannot be used for nonadditive systems.

One such failure of ordinary thermostatistics has been its lack of di�erent stationary

distributions. When one maximizes the Boltzmann-Gibbs entropy subject to the normal-

ization and internal energy constraint, one can only obtain an exponential stationary distri-

bution. However, we now know the existence of systems with many di�erent metastable

states, exhibiting stretched exponentials, inverse power laws or inverse gamma distribu-

tions as their associated stationary distributions [4, 22]. Obviously, the Boltzmann-Gibbs

entropy cannot satisfy these cases by itself. Due to these reasons, the last two decades

have been extensively devoted to the generalization of Boltzmann-Gibbs entropy.

Many new entropy de�nitions have been proposed in order to produce this general-

ization. Some of them, but not all, are the Tsallis entropy [11], Sharma-Mittal entropy

[14], Kaniadakis entropy [108], the incomplete statistics entropy [12] and R�enyi entropy

[13]. Although all these entropies yield stationary distributions of the inverse power law

form, they are in fact very di�erent from one another. For example, the Sharma-Mittal

entropy [14] is a two-parameter generalization of the Boltzmann-Gibbs entropy, whereas

Tsallis and R�enyi entropies are single parameter generalizations. On the other hand, the
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Tsallis entropy is nonadditive while R�enyi entropy is completely additive. In other words,

it is still an open problem to choose between these alternatives or to use each of them for

di�erent purposes. This picture is surprising after all since the goal was the uni�cation of

di�erent stationary distributions under one generalized entropy expression.

In this dissertation, I mainly investigate two entropy de�nitions and some associated

issues. These entropies are Tsallis and incomplete statistics (IS). Both yield the same

type of stationary distributions, i.e., inverse power law distributions. They both generalize

the Boltzmann-Gibbs entropy through the use of a single free parameter. On the other

hand, the nature and physical meaning of this single parameter is very di�erent for these

entropies.

As I have outlined in Chapter 2, the nonadditivity parameter q associated with the

Tsallis entropy is a measure of the 
uctuation of the intensive variables, such as tem-

perature. The incompleteness parameter q in the IS entropy is, however, a measure of

the neglected interactions and the incompleteness of our knowledge about the physical

system. Therefore, one must be very careful when one studies these generalized entropies.

Despite the failure of Boltzmann-Gibbs entropy according to our current understand-

ing, it had enjoyed a great success in its applications to many diverse �elds. One such

example is provided by the well-known Kramers' reaction rate problem [28]. According

to the model constructed by Kramers, the reaction rates, in both low and high viscosity

limits, are of exponential form. This is not surprising after all when one realizes that

Kramers' model is based on linear Fokker-Plack equation whose stationary solutions are

exponential. The di�culty is that we now have some experimental and numerical results,

which do not conform to this exponential behavior. In fact, the survival probabilities re-

lated to the reaction rates obtained from these experimental and numerical �ndings are

of the inverse power law form in the time domain [36].

There are two main paths to follow in order to generalize Kramers' rate. First, one

may adopt a fractional Fokker-Planck equation so that one obtains an inverse power law

asymptotically [42]. Second, one may use the nonlinear Fokker-Planck equation, Tsallis

entropy [73, 74] and q-exponential functions on which this entropy is based. One again
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obtains survival probabilities of inverse power law form [44]. Both of these approaches

give a good �t to the existing experimental data. The major di�erence between the two

approaches is that there is as yet no entropy de�nition for the fractional approach [109].

The major use of the Tsallis entropy is believed to be for systems which are driven out

of equilibrium. Although open systems are such cases, there is no proper framework in

which the Tsallis entropy could be used for such systems. Such a general treatment has

been achieved in Chapter 5. By de�ning a new quantity called \nonadditive renormalized

entropy", I have shown that the nonadditive open systems described by the Tsallis entropy

can be studied in a consistent manner. By consistency, I mean that the stationary equi-

librium distribution has the maximum entropy even for open systems. The renormalized

entropy can also be used as a measure of self-organization in open systems, since it is a

measure of order for entropy values. Open systems are systems which can be modeled

by a control parameter in order to simulate energy and/or matter in
ux. According to

(additive or nonadditive) renormalized entropy, the entropy of the system decreases as

the control parameter increases. Since the zero value of the control parameter denotes

the stationary equilibrium distribution, this means a continuous decrease in entropy val-

ues of the system as it is more and more driven out of equilibrium. Since entropy is a

measure of disorder, the smaller the entropy, the more ordered the system is. Thus, the

use of the term \control parameter" is justi�ed in the sense that Haken's de�nition of

self-organization [52] is realized even for nonadditive open systems.

The additive S-theorem has also been used as a measure of (numerical) complexity for

the logistic map [68], heart rate variability [69, 70] and the analysis of electroencephalo-

grams of epilepsy patients [71]. I hope that the same applications and others may be

made in the near future with the nonadditive S-theorem developed in this dissertation.

The discussion of nonadditive open systems illuminated a very interesting topic, namely

the constraints, i.e., how the average will be taken. Since the beginning of the nonadditive

formalism in the �rst paper of Constantino Tsallis in 1988 [11], the question as to which

constraint is more suitable for this new entropy has been an issue [110]. The original

choice of constraints was the ordinary probability de�nition. However, any attempt to
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obtain L�evy distributions from the Tsallis entropy failed with this constraint since the

second moment of the L�evy distribution diverged. Therefore, the physicists working in

this �eld switched to second constraint as de�ned in Chapter 2. Unfortunately, this new

de�nition also had its 
aws. For example, this constraint was unnormalized and violated

energy conservation. The �nal choice was the so-called escort distributions. Everything

seems to work �ne with this constraint but, unfortunately, the transition from the ordinary

probability de�nition (�rst choice of constraints) to the escort distribution (the third and

last choice of constraints) was ad hoc. The problem with the constraints is to �nd some

criterion to choose between these two.

The nonadditive S-theorem proved to be one such criterion, since it shows that the

nonadditive thermostatistics described by the Tsallis entropy can be generalized to open

systems only though the use of ordinary constraints. So far, I could neither formulate nor

�nd in the literature a nonadditive generalization of S-theorem with the escort distribu-

tion. The S-theorem stands as a unique theorem in its relation to the constraints in the

nonadditive formalism. Its additive counterpart is formed by a combination of the ordinary

Boltzmann-Gibbs entropy together with the escort distribution. To the best of my knowl-

edge, this latter is the only case in which the Boltzmann-Gibbs entropy is used together

with the escort distribution. The general view of generalized thermostatistics involves the

entropy maximization procedure of Jaynes [111] and the use of Boltzmann-Gibbs entropy

is allowed only with the ordinary probability distribution as shown by Jaynes. However,

the S-theorem is not based on entropy maximization and therefore deserves a di�erent

treatment.

Despite the multitude of the di�erent entropy expressions, almost all of these entropies

have one feature in common. They assume that our knowledge of the system is complete

i.e., we know all about the system. According to this assumption, we have access to

all microstates and the corresponding probability distributions. This fact means that

the ordinary normalization is used. It assumes that we know the probability of every

microstate of our physical system. This picture is, of course, inadequate, since one can

encounter some situations for which one does not have all the information or chooses to
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neglect some interaction. For these situations, Alexander Wang proposed the incomplete

statistics formalism (IS) [12, 79]. This formalism is a nonadditive, single parameter (it

too is called q) generalization of Boltzmann-Gibbs entropy. The only di�erence between

it and BG entropy is the normalization so that the associated entropy again yields inverse

power law distribution as a stationary solution. The generalization of this formalism to

open systems is essential, since it is less likely that we will have complete knowledge of

the system since the interaction terms governing the system increase for open systems.

This generalization has been achieved in Chapter 6.

In Chapter 7, I have introduced a method dating back to Boltzmann, called the method

of orthodes. The method of orthodes is to show if the heat theorem is satis�ed by the

distribution associated with the particular entropy. It happens that the microcanonical,

canonical and grand canonical distributions all are orthodes, since they satisfy the heat

theorem [89].

There are three points to emphasize on the importance of the method of orthodes. The

�rst one is that it provides a criterion for the equilibrium description of the thermostatistics

associated with one particular entropy. Therefore, it cannot state anything relevant on

the systems o� equilibrium. Second, it does so purely on mechanical arguments. In other

words, the method of orthodes shows whether that entropy can be used as a valid entropy

at equilibrium without invoking probabilistic arguments. The third point is central, since

the method of orthodes works for all system sizes. It can be used as a criterion for

equilibrium thermostatistics for small systems as well as large systems. In other words,

one does not need to invoke the thermodynamic limit. If an entropy expression passes the

test of orthode by Boltzmann, that particular entropy expression can be used for systems

of any size as long as the system is at equilibrium.

I have then shown that the Tsallis distribution is such an orthode so that it can be

used as a suitable entropy expression for systems of any size at equilibrium. However,

a surprising result was found in my application of the method of orthodes to the Tsallis

ensemble. The corresponding entropy expression was found to be the R�enyi entropy of the
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order 1
q

. Therefore, I proved that the Tsallis distribution is an orthode whose associated

entropy is given by the R�enyi entropy [104].

The generalized thermostatistics have come a long way in almost 20 years. Much

progress has been made, but one central theorem is still missing. It is a generalized central

limit theorem whose basin of attraction is q-exponential obtained from the maximization

of the Tsallis entropy. In the case of Gaussian distribution, we have central limit theorem

so that we now know why the exponentials are so ubiquitous [112]. In the case of L�evy

distributions, we also have a generalized central limit theorem [113]. On the other hand,

as yet we have none in the case of q-exponentials. This topic, in my opinion, will prove

to be important in the future progress of this �eld of research [114].
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