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CHAPTER 1

INTRODUCTION

If each of X and Y is a Banach space, let L(X, Y ) (resp. K(X, Y )) be the space of all

continuous (resp. compact) linear transformations from X to Y . The norm of L(X,Y )

is defined by ‖T‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ ≤ 1}. An extensive list of definitions can

be found in Chapter 2.

The isomorphic structure of K(X,Y ), and especially L(X,Y ), can be quite complex.

That is, there may be many classical Banach spaces Z and linear homeomorphisms

W : Z → L(X, Y ). Although the structure of K(X, Y ) is less complicated in general,

this space may contain copies of the sequence space co.

To illustrate these points and to introduce topics of central importance in this paper,

consider the spaces K(`2, `2) and L(`2, `2), where `2 is the separable, infinite dimensional

Hilbert space. Specifically, `2 is the vector space of all real sequences x = (xn) satisfying

∞∑
n=1

|xn|2 <∞.

If `2 is equipped with pointwise operations and the norm

‖x‖ =

(
∞∑

n=1

|xn|2
)1/2

<∞,

then `2 is a separable, infinite dimensional Banach space.

If x = (xn) ∈ `2 and en = (eni
)∞i=1 is defined by eni

= 1 if i = n and eni
= 0 otherwise,

i.e. (en) = (0, 0, . . . , 0, 1︸︷︷︸
nth

, 0, . . .), then x =
∞∑

n=1

xnen. In fact, this infinte series converges

unconditionally to x in the metric topology (‖f − g‖2 =

(
∞∑

n=1

|f(n)− g(n)|2
)1/2

); i.e.,

any rearrangement converges. Moreover, if A is a non-empty subset of N and PA : `2 → `2

is defined by PA(x) =
∑
n∈A

xnen, then PA is linear, ‖PA‖ ≤ 1, and P 2
A = PA; i.e. PA is

a projection. If A = {1, . . . , n}, then PA is usually denoted by Pn. If A is finite, then

PA ∈ K(`2, `2). Define a projection Qn : `2 → `2 by Qn(x) = xnen. Let F be the finite -
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co-finite algebra of subsets of N, and define µ : F → K(`2, `2) by

µ(A)(x) =


∑
n∈A

Qn(x) if A is finite

−
∑
n6∈A

Qn(x) if N \ A is finite

(Of course, µ(∅) is defined to be 0.) It is not difficult to see that µ is bounded and

finitely additive. It is also clear that ‖µ({n})‖ 6→ 0; i.e., µ is not strongly additive. The

algebra version of the Diestel-Faires Theorem [5] then guarantees that K(`2, `2) contains

an isomorphic copy of co. Observe that co 6↪→ `∗2 = X∗ and co 6↪→ `2 = Y .

A stronger conclusion can be drawn if one relaxes the requirement that the operators

be compact. Let P be the power class of N and define µ : P → L(`2, `2) by

µ(A)(x) =


0 if A = ∅∑
n∈A

Qn(x) if A 6= ∅

for x ∈ `2. If x = (xn) ∈ `2, then the unconditional convergence of the series
∞∑

n=1

xnen

guarantees that µ is well defined. As above, µ is bounded, finitely additive, and not

strongly additive. Since µ is defined on a σ-algebra of sets, the Diestel-Faires Theorem

ensures that L(`2, `2) contains an isomorphic copy of `∞. Since `∞ contains an isometric

copy of all separable Banach spaces, it follows that L(`2, `2) contains an isomorphic

copy of each separable Banach space. Thus, the isomorphic structure of L(`2, `2) is very

complex. However, we observe that `∞ 6↪→ K(`2, `2) (see Theorem 1.1 below).

Let X∗ be the continuous linear dual of X. To see how X∗ ↪→ K(X, Y ), consider the

following. Choose y ∈ Y with ‖y‖ = 1. For x∗ ∈ X∗, define (x∗ ⊗ y)(x) = x∗(x)y. Note

that these are rank one. Thus, each x∗ maps to a compact operator in K(X,Y ). And

we have ‖x∗ ⊗ y‖ = ‖x∗‖.

Numerous authors have discussed the structure of K(X, Y ) and whether K(X, Y ) is

complemented in L(X,Y ) when the two spaces of operators are different. A subspace

H of X is said to be complemented if there is a projection P on X with P (X) = H.

Specifically, we note the papers by Feder [11], Kalton [15], Drewnowski [6], Emmanuele
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[7] and [8], Emmanuele and John [9], and John [14]. The presense of isomorphic copies

of co in K(X, Y ) has been central in these discussions. See Theorem 1.3 below.

Earlier remarks indicated that the structure of K(X, Y ) is, in general, simpler than

that of L(X, Y ). Kalton established the following fundamental result in [15].

Theorem 1.1. K(X, Y ) contains a copy of `∞ if and only if `∞ ↪→ X∗ or `∞ ↪→ Y .

Note that by a theorem of Bessaga and Pelczynski [2], `∞ ↪→ X∗ if and only if X

contains a complemented isomorphic copy of `1.

Kalton’s results about complementation include the following:

Theorem 1.2. (Kalton [15])

Suppose X contains a complemented subspace isomorphic to `1 and that Y is infinite-

dimensional. Then K(X, Y ) is uncomplemented in L(X,Y ).

An elementary proof of Theorem 1.3 using vector measures will be given later.

Theorem 1.3. (Kalton [15])

Let X be a Banach space with an unconditional finite-dimensional expansion of the iden-

tity {An}. If Y is any infinite-dimensional Banach space, then the following are equiva-

lent:

(i) K(X, Y ) = L(X, Y )

(ii) K(X,Y ) contains no copy of co.

(iii) L(X,Y ) contains no copy of `∞.

(iv) K(X, Y ) is complemented in L(X, Y ).

(v) For T ∈ L(X,Y ) the series
∞∑

n=1

TAn converges in norm.

Results of Moshe Feder ([10], [11]) have played a prominent role in the study of

complementation of K(X, Y ) in L(X, Y ). Further, Feder’s results have naturally led to

an investigation of whether co embeds isomorphically into K(X, Y ).

Theorem 1.4. (Feder [10]) Let X be weakly compactly generated and suppose there exists

a sequence (Tn) in K(X,Y ) such that
∞∑

n=1

Tn(x) converges unconditionally to T (x) for

every x ∈ X where T ∈ L(X, Y ) is non-compact. Then K(X, Y ) is uncomplemented in

L(X, Y ).
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A separable Banach space X has the bounded approximation property (BAP) if there

is a sequence (Tn) of finite-rank operators so that

lim
n→∞

‖x− Tn(x)‖ = 0

for all x ∈ X. If
∞∑

n=1

Tn(x) converges unconditionally for all x ∈ X, then (Tn) is called an

unconditional finite dimensional expansion of the identity (u.f.d.e.i.) of X. A sequence

(Tn) in K(X, Y ) is said to be an unconditional compact expansion of T ∈ L(X, Y ) if
∞∑

n=1

Tn(x) converges unconditionally to T (x) for every x ∈ X.

A basis (xn)∞n=1 of a Banach space X is called unconditional if for each x ∈ X the

series
∞∑

n=1

x∗n(x)xn converges unconditionally to x.

Feder showed that the non-complementation of K(X, Y ) in L(X, Y ) is equivalent to

K(X, Y ) 6= L(X, Y ) in the cases where X is reflexive (i.e., X = X∗∗) and when X or

Y has the bounded approximation property and Y is a subspace of a space with an

unconditional basis. Note that for a reflexive Banach space X with the approximation

property, X has an unconditional finite dimensional expansion of the identity if and only

if X is a subspace of a space with an unconditional basis.

Theorem 1.5. (Feder [11])

For Banach spaces X and Y , if there exists a non-compact operator T ∈ L(X, Y ) admit-

ting an unconditional compact expansion, then K(X, Y ) is uncomplemented in L(X, Y ).

Emmanuele stated that Feder’s hypothesis in the previous result is equivalent to

the existence of copies of co inside K(X, Y ). In 1992, Emmanuele [7] and John [14]

independently proved

Theorem 1.6. If K(X,Y ) 6= L(X, Y ) and co ↪→ K(X, Y ), then K(X, Y ) is not comple-

mented in L(X, Y ).

An elementary and self-contained proof of Theorem 1.6 will be presented in Chapter

4.

Emmanuele and John subsequently collaborated on an expanded study of comple-

mented spaces of operators and established the following theorem. Their paper contains

refinements of previous results as well as an extensive bibliography.
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Theorem 1.7. (Emmanuele and John [9])

If co ↪→ K(X, Y ), then K(X, Y ) is uncomplemented in L(X,Y ), and if there is a non-

compact operator from X to Y that factors through a space with an unconditional finite

dimensional expansion of the identity, then co ↪→ K(X,Y ).

The space Lw∗(X∗, Y ) consists of those bounded linear operators W : X∗ → Y which

are w∗ − w continuous; Kw∗(X∗, Y ) is defined analogously.

Theorem 1.8. (Emmanuele [8])

If co ↪→ Kw∗(X∗, Y ), then either Kw∗(X∗, Y ) = Lw∗(X∗, Y ) or Kw∗(X∗, Y ) is uncomple-

mented in Lw∗(X∗, Y ).

Emmanuele also proved the following result similar to Theorem 1.3.

Theorem 1.9. (Emmanuele [8])

Let Y be a Banach space with an unconditional finite-dimensional expansion of the iden-

tity {An}. If Y is any infinite-dimensional Banach space, then the following are equiva-

lent:

(i) Kw∗(X∗, Y ) = Lw∗(X∗, Y )

(ii) Kw∗(X∗, Y ) contains no copy of co.

(iii) Lw∗(X∗, Y ) contains no copy of `∞.

(iv) Kw∗(X∗, Y ) is complemented in Lw∗(X∗, Y ).

Theorem 1.1, due to Kalton, was generalized by Drewnowski who demonstrated

Theorem 1.10. (Drewnowski [6])

Kw∗(X∗, Y ) contains a copy of `∞ if and only if either `∞ ↪→ X or `∞ ↪→ Y .

Note that since Kw∗(X∗, Y ) contains isometric copies of both X and Y , the if part

is trivial.

Papers previously cited had noted that if co ↪→ K(X,Y ) 6= L(X, Y ), then `∞ ↪→

L(X, Y ). In 2005 Lewis [16] showed

Theorem 1.11. If X is infinite dimensional and co ↪→ L(X, Y ), then `∞ ↪→ L(X,Y ).
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Observe that co ↪→ Lw∗(X∗, Y ) does not imply `∞ ↪→ Lw∗(X∗, Y ). To see this

consider the following example. Let co = X and `1 = Y (Recall `1 is a Schur space).

Then co ↪→ Lw∗(c∗o, `1) = Kw∗(c∗o, `1) but `∞ 6↪→ Lw∗(c∗o, `1) since `∞ 6↪→ c∗o and `∞ 6↪→ `1.

Particularly in view of Theorem 1.11 and the preceding example, one is motivated to

study what additional conditions on X and Y will ensure that `∞ ↪→ Lw∗(X∗, Y ) when

co ↪→ Kw∗(X∗, Y ). Emmaunele proved:

Theorem 1.12. (Emmanuele [8])

Let co ↪→ Kw∗(X∗, Y ). Then `∞ ↪→ Lw∗(X∗, Y ), provided X and Y do not have the Schur

property.

Also, see Theorem 3.5 (below) in this context.

The principal new results of this paper are Theorems 3.3, 3.4, 3.7, and 4.3. In partic-

ular, note that Theorem 4.3 leads to new, accessible, and streamlined proofs of Theorem

1.6, results of Feder [10], Kalton [15], Bator and Lewis [3], Lewis [17], Drewnowski [6],

and the fact that `∞ is prime.
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CHAPTER 2

HISTORICAL PERSPECTIVE

Throughout this paper X and Y will represent real Banach spaces, and X∗ will

represent the continuous linear dual of X. A linear functional f : X → R is continuous

if and only if {f(x) : x ∈ X, ‖x‖ ≤ 1} is bounded in R. Analogously, a linear function

W : X → Y is continuous if and only if {W (x) : x ∈ X, ‖x‖ ≤ 1} is bounded in Y .

It is customary to refer to continuous linear functionals as bounded linear functionals

and to refer to continuous linear functions as bounded linear operators or more simply

operators. For convenience, let BX = {x ∈ X : ‖x‖ ≤ 1}, and as in the introduction, let

L(X, Y ) denote the linear space (pointwise operations) of all operators T : X → Y . If

T ∈ L(X, Y ), set ‖T‖ = sup{‖T (x)‖ : x ∈ BX}. An operator T : X → Y is said to be

compact, or T ∈ K(X, Y ), if T (BX) has compact closure in Y . In particular, a non-zero

compact operator does not have compact range. Observe that in a Banach space, X, BX

is compact if and only if X is finite dimensional.

An operator T is an embedding of X into Y if T is an isomorphism (= linear homeo-

morphism) onto its image T (X). In this case we say that X embeds in Y or that Y con-

tains an isomorphic copy of X. If T : X → Y is an embedding such that ‖T (x)‖Y = ‖x‖X

for all x ∈ X, then T is said to be an isometric embedding and is referred to as an iso-

metric isomorphism.

For a normed linear spaceX, the weak topology ofX is the weakest topology onX such

that each functional x∗ ∈ X∗ is continuous. It is common to write (xα)
w→ x to denote

that a net (xα) from X converges to x in the weak topology. Let η : X → X∗∗ be the

natural embedding of a Banach space X into its second dual, given by η(x)(x∗) = x∗(x).

The space X is identified with η(X) ⊂ X∗∗. The weak∗ topology on a dual space X∗

is the topology induced on X∗ by X, i.e. it is the weakest topology on X∗ that makes

all elements of η(X) continuous. We say that a net (x∗α) from X∗ converges weak∗ to

x∗ ∈ X∗, and we write (x∗α)
w∗
→ x∗ if for each x ∈ X, x∗α(x) → x∗(x).
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An operator T : X∗ → Y is said to be weak∗ −to−weak continuous if (T (x∗α))
w→ T (x∗)

in the weak topology whenever (x∗α)
w∗
→ x∗ in the weak∗-topology on X∗. The space of

all compact w∗ − w continuous linear operators from X∗ into Y will be represented by

Kw∗(X∗, Y ), and the space of all bounded w∗ − w continuous linear operators from X∗

into Y will be represented by Lw∗(X∗, Y ). The norm of an operator T ∈ Lw∗(X∗, Y ) is

defined by ‖T‖ = sup{‖T (x∗)‖ : x∗ ∈ X∗, ‖x∗‖ ≤ 1}.

A Banach spaceX has the Schur property (orX is a Schur space) if a sequence (xn)∞n=1

in X converges to 0 weakly if and only if (xn)∞n=1 converges to 0 in norm, i.e., weak and

norm sequential convergence coincide. It is well known that `1 has the Schur property

and that every infinite dimensional Schur space contains an isomorphic copy of `1. That

is, if X is an infinite dimensional Schur space, then there is a linear homeomorphism T

from `1 into X.

The space co is the linear space of all sequences x = (αn)∞n=1 converging to 0 with

the sup norm. The space `1 is defined as the linear space of all sequences x = (αn)∞n=1 of

scalars for which the norm ‖x‖ =
∞∑

n=1

|αn| <∞. Note that c∗o is isometrically isomorphic

to `1, i.e. c∗o
∼= `1. Furthermore, `∗1

∼= `∞, the space of all bounded sequences x = (αn)∞n=1

of scalars with the sup norm.

In this paper the following two fundamental results from vector measure theory will

prove useful in identifying isomorphic copies of co and `∞: Rosenthal’s lemma and the

Diestel-Faires Theorem. Rosenthal’s lemma will be stated and then used to give a detailed

proof of the Diestel-Faires Theorem. To paraphrase the words of Diestel [4], Rosenthal’s

lemma is the sharpest general disjointification result in existence.

Let F be a field of subsets of the set Ω and let µ : F −→ X be a vector measure. A

vector measure µ is said to be strongly additive provided the series
∞∑

n=1

µ(En) converges

in norm whenever (En) is a sequence of pairwise disjoint members of F . In fact, any

rearrangement of the infinite series converges and has the same sum, i.e.
∞∑

n=1

µ(En)

is unconditionally convergent. An equivalent formulation of strong additivity is that

whenever (En) is a pairwise disjoint sequence from F , ‖µ(En)‖ → 0. The `∞ norm of a

bounded vector measure µ is defined by ‖µ‖∞ = sup {‖µ(A)‖ : A ∈ F} <∞.
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Lemma 2.1. (Rosenthal’s lemma [4])

Let F be a field of subsets of the set Ω. Let (µn) be a uniformly bounded sequence of

finitely additive scalar-valued measures defined on F . Then if (En) is a disjoint sequence

of memebers of F and ε > 0 there is a subsequence (Enj
) of (En) such that

∣∣µnj

∣∣
⋃

k 6=j
k∈∆

Enk

 < ε

for all finite subsets ∆ of N and for all j = 1, 2, 3, ....

If, in addition, F is a σ-field, then the subsequence
(
Enj

)
may be chosen such that

∣∣µnj

∣∣(⋃
k 6=j

Enk

)
< ε

for all j = 1, 2, 3, ....

Theorem 2.2. (Diestel-Faires [5])

Let F be a field of subsets of the set Ω, and let X be a Banach space. If µ : F −→ X is a

bounded (finitely additive) vector measure which is not strongly additive, then there is a

linear homeomorphism T : co −→ X and a pairwise disjoint sequence (En) in F so that

T (en) = µ(En) for every n ∈ N. If, in addition, F is a σ-field, then the above statement

remains true if co is replaced by `∞.

Proof. Assume first that F is a field. If µ is not strongly additive, then there exists

a sequence of disjoint memebers (En) of F and an ε > 0 so that ‖µ(En)‖ > ε for every

n ∈ N.

Choose (x∗n) in X∗ with ‖x∗n‖ = 1 such that x∗nµ(En) = ‖µ(En)‖ > ε for every n ∈ N.

Since µ is bounded, (x∗nµ) is a uniformly bounded sequence.

By Rosenthal’s lemma, there exists a subsequence (x∗nj
µ) such that

∣∣∣x∗nj
µ
∣∣∣
⋃

i6=j
i∈∆

Eni

 <
ε

2

for all j ∈ N and all finite subsets ∆ of N.

Relabel x∗nj
by x∗j and Enj

by Ej. Therefore,
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∣∣∣x∗nj
µ
∣∣∣
⋃

i6=j
i∈∆

Eni

 <
ε

2
, (1)

for all j ∈ N and all finite subsets ∆ of N, and∣∣x∗jµ(Ej)
∣∣ > ε, (2)

for all j ∈ N.

For a finitely supported sequence (αi) ∈ co define T : co → X by

T ((αi)) =
∞∑
i=1

αiµ(Ei).

The unconditional covergence of
∞∑
i=1

µ(Ei) guarantees that
∞∑
i=1

αiµ(Ei) converges. This

also shows that T is well-defined and continuous, and T is linear on the dense linear

subspace of co consisting of the finitely supported sequences.

We want to show T is bounded. Suppose α = (αi) ∈ co is finitely supported and

x∗ ∈ BX∗ . Then

‖x∗T (α)‖ =

∥∥∥∥∥
〈
x∗,

∞∑
i=1

αiµ(Ei)

〉∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

αix
∗µ(Ei)

∥∥∥∥∥
≤

∞∑
i=1

|αi| · |x∗µ(Ei)|

≤
∞∑
i=1

‖α‖∞ · |x∗µ(Ei)|

= ‖α‖∞
∞∑
i=1

|x∗µ(Ei)|

≤ ‖α‖∞ ‖µ‖ (Ω)

Therefore, ‖T (α)‖ ≤ ‖α‖∞ ‖µ‖ (Ω), ‖T‖ ≤ ‖µ‖ (Ω), and hence, T is bounded on a dense

subspace of co. Thus, T has a bounded extension to all of co, still denoted by T , with

norm ≤ ‖µ‖ (Ω). Therefore, if α = (αi) ∈ co, then T (α) =
∞∑
i=1

αiµ(Ei). Note that

T (en) = µ(En).

We want to show T is an isomorphism (topologically); i.e., for all α ∈ co, A ‖α‖∞ ≤

‖T (α)‖ ≤ B ||α‖∞ for some A,B > 0. Let B = ‖µ‖ (Ω)
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Suppose α = (αi) ∈ co. Then

∣∣x∗jT (α)
∣∣ =

∣∣∣∣∣
∞∑
i=1

αix
∗
jµ(Ei)

∣∣∣∣∣
=

∣∣∣∣∣ lim
m→∞

(
m∑

i=1

αix
∗
jµ(Ei)

)∣∣∣∣∣
≥

∣∣αjx
∗
jµ(Ej)

∣∣−
∣∣∣∣∣∣∣ lim
m→∞

 m∑
i=1
i6=j

αix
∗
jµ(Ei)


∣∣∣∣∣∣∣

≥ |αj| ·
∣∣x∗jµ(Ej)

∣∣− ‖α‖∞ · lim
m→∞

 m∑
i=1
i6=j

∣∣x∗jµ∣∣ (Ei)


≥ |αj| ε− ‖α‖∞ · ε

2

by (1) and (2). Whence,
∣∣x∗jT (α)

∣∣ ≥ |αj| ε− ‖α‖co
· ε

2
, for all j ∈ N and

‖T (α)‖ = sup {|x∗T (α)| |x∗ ∈ BX∗}

≥ supj

∣∣x∗jT (α)
∣∣

≥ supj

{
|αj| ε− ‖α‖co

· ε
2

}
= ‖α‖∞ ε− ‖α‖∞

ε
2

= ε1
2
‖α‖∞.

Consequently, ‖T (α)‖ ≥ ε
2
‖α‖∞ and, T is an isomorphism. Let A = ε

2
.

Now, suppose F is a σ-field. Proceed as above to produce (with the help of the σ-field

version of Rosenthal’s lemma) an ε > 0, (x∗n) in BX∗ and a sequence (Ej) of pairwise

disjoint members of F such that ∣∣x∗jµ(Ej)
∣∣ > ε

and ∣∣x∗jµ∣∣
(⋃

i6=j

Ei

)
<
ε

2

for all j ∈ N.

Let E be the set of finitely-valued sequences α = (αi) ∈ `∞. If α = (αi) ∈ `∞

is a finitely-valued sequence, write α = (αi) =
n∑

j=1

βjχAj
where A1, . . . An are pairwise

disjoint sets of positive integers.
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Define T : E → X by T (α) =
n∑

j=1

βjµ

 ⋃
k∈Aj

Ek

, if α ∈ E with α =
n∑

j=1

βjχAj
.

Then T is linear on the dense linear subspace E of `∞. We want to show T is bounded

on E. If x∗ ∈ BX∗ and α ∈ E, then

‖x∗T (α)‖ =

∥∥∥∥∥
〈
x∗,

∞∑
i=1

αiµ(Ei)

〉∥∥∥∥∥
=

∣∣∣∣∣∣
n∑

j=1

βjx
∗µ

 ⋃
k∈Aj

Ek

∣∣∣∣∣∣
≤

n∑
j=1

|βj| ·

∣∣∣∣∣∣x∗µ
 ⋃

k∈Aj

Ek

∣∣∣∣∣∣
≤

n∑
j=1

‖α‖∞ ·

∣∣∣∣∣∣x∗µ
 ⋃

k∈Aj

Ek

∣∣∣∣∣∣
≤ ‖α‖∞ ‖µ‖ (Ω).

Therefore, ‖T (α)‖ ≤ ‖α‖∞ ‖µ‖ (Ω), and ‖T‖ ≤ ‖µ‖ (Ω).

We want to show T is an isomorphism. To this end, we will show ‖T (α)‖ ≥ A ‖α‖∞
for some A > 0.
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∣∣x∗jT (α)
∣∣ =

∣∣∣∣∣∣
n∑

i=1

βix
∗
jµ

 ⋃
k∈Aj

Ek

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣βjx
∗
jµ(Ej) + βjx

∗
jµ

 ⋃
k∈Aj
k 6=j

Ek

+

 n∑
i=1
i6=j

βix
∗
jµ

⋃
k∈Ai
k 6=j

Ek



∣∣∣∣∣∣∣

≥
∣∣βjx

∗
jµ(Ej)

∣∣−
∣∣∣∣∣∣∣βjx

∗
jµ

 ⋃
k∈Aj
k 6=j

Ek

+

 n∑
i=1
i6=j

βix
∗
jµ

⋃
k∈Ai
k 6=j

Ek



∣∣∣∣∣∣∣

≥ |βj| ε− ‖α‖∞


∣∣∣∣∣∣∣x∗jµ

 ⋃
k∈Aj
k 6=j

Ek


∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
 n∑

i=1
i6=j

βix
∗
jµ

⋃
k∈Ai
k 6=j

Ek



∣∣∣∣∣∣∣


≥ |βj| ε− ‖α‖∞
∣∣x∗jµ∣∣

(⋃
i6=j

Ei

)

≥ |βj| ε− ‖α‖∞
ε
2
, for all 1 ≤ j ≤ n

Therefore, ‖T (α)‖ ≥ ‖α‖∞ ε− ‖α‖∞
ε
2

= ε
2
‖α‖∞, and T is an isomorphism. �

Another well-known result which will be useful in proving several theorems in Chapter

4 is the Josefson-Nissenzweig Theorem which was independently discovered by B. Josefson

and A. Nissenzweig in 1975.

Theorem 2.3. (Josefson-Nissenzweig Theorem [4]) If X is an infinite dimensional Ba-

nach space, then there exists a weak∗-null sequence of norm-one vectors in X∗.

In Chapter 4 we will also make use of Phillips’s Theorem [4]. Recall that a Banach

space Y is called injective if whenever X is a Banach space, E is a closed subspace of

X, and T : E → Y is a bounded operator, then there is a bounded linear operator

T̃ : X → Y which is an extension of T . Y is called isometrically injective if T̃ can be

additionally chosen to have
∥∥∥T̃∥∥∥ = ‖T‖.
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Theorem 2.4. (Phillips’s Theorem) Let R be a linear subspace of the Banach space X

and suppose T : R → `∞ is a bounded linear operator. Then T may be extended to a

bounded linear operator S : X → `∞.

Proof. Observe that the operator T must be of the form T (r) = (r∗n(r)) for some

bounded sequence (r∗n) in R∗. If, for each n ∈ N, we let x∗n be a Hahn-Banach extension

of r∗n to all of X, then the operator S(x) = (x∗n(x)) is a bounded linear extension of

T . �

Note that if `∞ is a closed linear subspace of a Banach space X, we can extend the

identity operator id : `∞ → `∞ to an operator S : X → `∞ with ‖S‖ = 1. The operator

S is naturally a norm-one projection of X onto `∞.

A formal series
∞∑

n=1

xn in a Banach spaceX is weakly unconditionally convergent (wuc)

(or weakly unconditionally Cauchy) if for every x∗ in X∗

∞∑
n=1

|x∗(xn)| <∞.

Note that
∞∑

n=1

en is wuc in co. In fact, Bessaga and Pelczynski [2] showed that co ↪→ X

when X contains any wuc series which is not unconditionally convergent.

The strong operator topology in L(X, Y ) is the topology defined by the basic set of

neighborhoods

N(T ;A, ε) = {R : R ∈ L(X, Y ), ‖(T −R)x‖ < ε, x ∈ A},

where A is an arbitrary finite subset of X and ε > 0 is arbitrary. Thus, in the strong

operator topology, a generalized sequence (Tα) converges to T if and only if (Tα(x)) con-

verges to T (x) for every x in X.

The space Kw∗(X∗, Y ) was originally introduced as the ε−product X ⊗ε Y of X

and Y , where X ⊗ε Y is the least crossnorm tensor product completion of X and Y .

It has the advantage over K(X, Y ) in that, as far as methods of proof are concerned,

it is conceptually easier to deal with than K(X, Y ) itself, and it comprises not only

spaces of the type K(X, Y ) but also concrete spaces of analysis such as spaces of vector-

valued continuous functions and of vector-valued measures. More specifically, we have
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the following well-known fundamental isometric isomorphism and isometric embedding,

respectively:

K(X, Y ) ∼= Kw∗(X∗∗, Y )

by

k 7−→ k∗∗,

and

X ⊗ε Y ↪→ Kw∗(X∗, Y )

by

(x⊗ y)(x∗) 7−→ x∗(x)y

See Ruess [20] for a detailed discussion of Kw∗(X∗, Y ).

Let (xn)∞n=1 be a sequence in a Banach space X. Suppose there is a sequence (x∗n)∞n=1

in X∗ such that

(i) x∗k(xj) = 1 if j = k and x∗k(xj) = 0 otherwise, for any k, j ∈ N,

(ii) x =
∞∑

n=1

x∗n(x)xn for each x ∈ X.

Then (xn)∞n=1 is called a Schauder basis (or simply basis) forX and the functionals (x∗n)∞n=1

in X∗ are called the biorthogonal functionals associated with (xn)∞n=1. Let Pn : X → X

be defined by Pn(x) =
n∑

i=1

x∗i (x)xi. Note that P 2
n = Pn. Thus, Pn is a projection, and the

closed linear span of {xi : 1 ≤ i ≤ n} is complemented in X for each n ∈ N. Denote the

closed linear span of {xi : 1 ≤ i ≤ n} by [xi : 1 ≤ i ≤ n]. If (xn) is a basis for X, we have

supn ‖Pn‖ <∞. If (xn) is a basis for a Banach space X, then the number K = supn ‖Pn‖

is called the basis constant for (xn). Further, a basis (xn) is said to be seminormalized if

there exists positive constants A and B so that A ≤ xn ≤ B for every n ∈ N.

Let (xn) be a basis for a Banach space X. Suppose that (pn) is a strictly increasing

sequence of integers with po = 0 and that (an) are scalars. Then a sequence of nonzero

vectors (un) in X of the form

un =

pn∑
j=pn−1+1

ajxj

is called a block basic sequence of (xn).
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The following theorem known as the Bessaga-Pelczynksi Selection Principle guaran-

tees the existence of a plethora of basic sequences in a non-Schur space.

Theorem 2.5. (Bessaga-Pelczynksi Selection Principle) Let (en)∞n=1 be a basis for a

Banach space X with basis constant K and dual functionals (e∗n)∞n=1. Suppose (xn)∞n=1 is

a sequence in X such that

(i) inf
n
‖xn‖ > 0, but

(ii) lim
n→∞

e∗k(xn) = 0 for all k ∈ N.

Then (xn)∞n=1 contains a subsequence (xnk
)∞n=1 which is equivalent to some block basic

sequence (yk)
∞
k=1 of (en)∞n=1. Furthermore, for every ε > 0 it is possible to choose (nk)

∞
k=1

so that (xnk
)∞n=1 has a basis constant at most K + ε. In particular, the same result holds

if (xn)∞n=1 converges to 0 weakly but not in the norm topology.

Recall that a basis (xn)∞n=1 of a Banach space X is called unconditional if for each x ∈

X the series
∞∑

n=1

x∗n(x)xn converges unconditionally to x. Let a1, a2, . . . , aN , b1, b2, . . . , bN

be scalars satisfying |an| ≤ |bn| for n = 1, . . . , N , then the least constant K such that the

inequality ∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥∥
holds is called the unconditional basis constant. Let X have an unconditional seminor-

malized Schauder basis, (xn), and suppose
∞∑
i=1

x∗i (x)xi = x. If (xn) is an unconditional

basis for X, then for Qi = Pi − Pi−1 we have supF

∥∥∥∥∥∑
i∈F

Qi

∥∥∥∥∥ < ∞ for F finite. In fact,

there exists a constant K such that if F ⊆ N and F is finite, then

∥∥∥∥∥∑
i∈F

Qi

∥∥∥∥∥ < K. (K is

an unconditional basis constant.)

Two bases (or basic sequences) (xn)∞n=1 and (yn)∞n=1 in the respective Banach spaces

X and Y are equivalent if whenever we take a sequence of scalars (an)∞n=1, then
∞∑

n=1

anxn

coverges if and only if
∞∑

n=1

anyn coverges.
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Recall the Uniform Boundedness Principle states that given a family (Tα) of bounded

linear operators from a Banach space X into a normed linear space Y , if sup{‖Tα(x)‖ :

α ∈ Γ} is finite for each x in X, then sup{‖Tα‖ : α ∈ Γ} is finite.

We conclude Chapter 2 by using the Diestel-Faires Theorem to give quick proofs of

two major results which are closely related to themes of this paper.

Theorem 2.6. (Feder [10])

Suppose (Tn)∞n=1 is a sequence of operators in K(X, Y ),
∞∑

n=1

Tn(x) converges uncondi-

tionally for every x in X, and the pointwise limit operator, T (x), is not compact. Then

co ↪→ K(X, Y ).

Proof. Note that the unconditional convergence of
∞∑

n=1

Tn(x) and the Uniform Bound-

edness Principle implies that {∑
i∈F

Ti : F ⊆ N, |F | <∞

}
is norm bounded. Using the finite - co-finite algebra of subsets of N, the non-strongly

additive vector measure µ(F ) =
∑
i∈F

Ti and the fact that
∑

Ti is not Cauchy with respect

to the norm, we can conclude that co ↪→ K(X, Y ). �

The Orlicz-Pettis Theorem is one of the more celebrated results in classical Banach

space theory and vector measure theory. The theorem was known by the Polish func-

tional analysis school by 1930. However, the result was not widely known until it was

independently discovered by Pettis in 1938. Although three different proofs of this theo-

rem appear in Diestel’s book [4] and a fourth proof is in Diestel and Uhl [5], the following

argument is particularly efficient and emphasizes important ideas in this paper.

Corollary 2.7. (Orlicz-Pettis Theorem) Let
∞∑

n=1

xn be a formal series in X such that

every subseries of
∞∑

n=1

xn is weakly convergent. Then
∞∑

n=1

xn is unconditionally convergent

in norm.

Consequently, a weakly countably additive vector measure on a σ-field is norm count-

ably additive.
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Proof. Let Xo = [xn : n ≥ 1], set µ(A) = w − lim
∑
i∈A

xi, and observe that µ is

bounded and finitely additive. Since Xo is weakly closed, µ maps P into Xo. Since Xo

is separable, the Diestel-Faires Theorem tells us that µ is strongly additive. Therefore,
∞∑

n=1

µ({n}) =
∞∑

n=1

xn is unconditionally covergent. �
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CHAPTER 3

CONTAINMENT OF CO AND `∞

IN SPACES OF OPERATORS

We first note that the same argument in the introduction for the containment of co

in K(`2, `2) also works to show that K(`p, `p) contains co for 1 ≤ p < ∞. In fact, the

same argument works for any infinite dimensional Banach space X with a seminormalized

unconditional basis: If X is an infinite dimensional Banach space with a seminormalized

unconditional basis, then co ↪→ K(X,X) and `∞ ↪→ L(X,X).

The following theorems are used to prove a new result. Recall that a basis (xn) for X

is perfectly homogeneous ([22]) if it is seminormalized and every seminormalized block

basic sequence with respect to (xn) is equivalent to (xn). A perfectly homogeneous basis

is unconditional. The unit vector bases of co and `p for 1 ≤ p <∞ are, up to equivalence,

the only perfectly homogeneous bases (Zippin [22]). We begin with a well-known result

by Pitt. The proof is from [1].

Theorem 3.1. (Pitt) For 1 ≤ q < p, L(`p, `q) = K(`p, `q). In other words, for 1 ≤ q <

p <∞, if X is a closed subspace of `p and T : X → `q is a bounded operator, then T is

compact.

Proof. Observe that `p is reflexive, hence X is reflexive and so BX is weakly compact.

Therefore in order to prove that T is compact it suffices to show that T|BX
is weak-

to-norm continuous. Since the weak topology of X restricted to BX is metrizable, it

suffices to see that whenever (xn)∞n=1 ⊂ BX is weakly convergent to some x in BX then

(T (xn))∞n=1 converges in norm to T (x).

We need only show that if (xn)∞n=1 is a weakly null sequence in X then

lim
n→∞

‖T (xn)‖ = 0. If this fails, we may suppose the existence of a weakly null sequence

(xn)∞n=1 with ‖xn‖ = 1 such that ‖T (xn)‖ ≥ δ > 0 for all n. By passing to a subsequence

we may suppose that (xn)∞n=1 is a basic sequence equivalent to the canonical `p basis.
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But then, since (T (xn))∞n=1 is also weakly null, by passing to a further subsequence we

may suppose that
(

T (xn)
‖T (xn)‖

)∞
n=1

, and hence (T (xn))∞n=1, is basic and equivalent to the

canonical `q-basis. Since T is bounded we have effectively shown that the identity map

i : `p → `q is bounded, which is absurd. Thus the theorem is proved. �

Quite a few theorems in this paper involve c0 and `∞ embedding in various spaces

of operators. Kalton showed in Corollary 2 of [15] that if X and Y are reflexive and

K(X, Y ) = L(X,Y ), then L(X, Y ) is reflexive. Observe that if 1 < p < q < ∞, then

L(`q, `p) = K(`q, `p) is a reflexive space, and c0 does not embed in L(`q, `p) as co is not

reflexive.

The next result from [13] will be used in several subsequent theorems. First, we

need a few definitions. A bounded subset A of X is called a limited subset of X if each

weak∗-null sequence in X∗ tends to zero uniformly on A. If every limited subset of X

is relatively compact, then we say that X has the Gelfand-Phillips property. Separable

Banach spaces have the Gelfand-Phillips property.

Theorem 3.2. (Ghenciu and Lewis [13])

Let X and Y be Banach spaces satisfying the following assumption: there exists a Ba-

nach space G with an unconditional basis (gn) and biorthogonal coefficients (g∗n) and two

operators R : G→ Y and S : G∗ → X such that (R(gi)) and (S(g∗i )) are seminormalized

sequences and either (R(gi)) or (S(g∗i )) is a basic sequence. Then co ↪→ Kw∗(X∗, Y )

(indeed, in any subspace H of Lw∗(X∗, Y ) which contains X ⊗λ Y ).

Moreover, if (R(gi)) and (S(g∗i )) are basic and Y (or X) has the Gelfand-Phillips

property, then Kw∗(X∗, Y ) contains a complemented copy of co.

Emmanuele observed in [7] that if X is a Banach space containing `1 and Y is a

Banach space containing `p, for some p ≥ 2, then co ↪→ K(X,Y ) and K(X, Y ) cannot

be complemented in L(X, Y ). He also noted that the closed subspace `p ⊗ε `q embeds

in K(`p′ , `q), for 1
p

+ 1
p′

= 1, and `p ⊗ε `q contains a complemented copy of co provided

1 < p′ ≤ q <∞. We refer to p′ as the conjugate of p, i.e. (`p)
∗ = `p′ .
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Theorem 3.3. Suppose 1 < p < ∞, p′ is conjugate to p, and S : `p −→ X is a

non-compact operator. For p′ ≤ p ≤ q or p ≤ p′ ≤ q, if R : `q −→ Y is a non-

compact operator, then co ↪→ Kw∗(X∗, Y ). Furthermore, if X or Y is Gelfand-Phillips

(separability is sufficient) then co
c
↪→ Kw∗(X∗, Y ). However, if p < q < p′, then there

exists spaces X and Y and appropriate operators S and R so that co 6↪→ Kw∗(X∗, Y ).

Proof. Case 1: p′ ≤ p ≤ q.

Since S : `p −→ X is a non-compact operator, we can find a δ > 0 and a sequence

(xn) in B`p such that ‖S(xn)− S(xm)‖ > δ if n 6= m. Since `p is reflexive, B`p is weakly

compact. Thus, without loss of generality we may assume (an) = (xn − xn+1) is weakly

null.

Observe that ‖S(an)‖ > δ for all n ∈ N. Thus, (an) 6→ 0. Hence (an) is weakly

null and seminormalized. By the Bessaga-Pelycznski Selection Principle (an) contains a

subsequence (ank
) which is equivalent to a block basic sequence (hn) of (ep

n).

Note that `p is perfectly homogeneous for all 1 ≤ p < ∞, so we may assume (an) is

equivalent to (ep
n). Thus, (an) is basic. Since p′ ≤ p, there is a natural injection, J , from

`p′ into `p which sends (ep′
n ) to (an). Note that the Bessaga-Pelczynski Selection Principle

also applies to the sequence (S(an)). Hence, we have (an) equivalent to (J((ep′
n ))), and

without loss of generality (S(J((ep′
n )))) = (S(an)) is a seminormalized basic sequence in

X.

Similarly, one can find a weakly null, seminormalized sequence (bn) equivalent to

(eq
n) in `q so that (R(bn)) is a seminormalized basic sequence in Y . Since p ≤ q, there

is a natural injection, U , from `p into `q which sends (ep
n) to (bn). Hence, we have (bn)

equivalent to (U((ep
n))), and without loss of generality (R(U((ep

n)))) = (R(bn)) is a weakly

null, seminormalized basic sequence in Y . (The Bessaga-Pelczynski Selection Principle

applies to the sequence (R(bn)).) Therefore, by Theorem 3.2, co ↪→ Kw∗(X∗, Y ).

Case 2: p ≤ p′ ≤ q.

Since S : `p −→ X is a non-compact operator, we can find a δ > 0 and a sequence

(xn) in B`p such that ‖S(xn)− S(xm)‖ > δ if n 6= m. Since `p is reflexive, B`p is weakly

compact. Thus, without loss of generality we may assume (an) = (xn − xn+1) is weakly

null.
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Observe that ‖S(an)‖ > δ for every n ∈ N. Thus, (an) 6→ 0. Hence (an) is weakly

null and seminormalized. By the Bessaga-Pelycznski Selection Principle (an) contains a

subsequence (ank
) which is equivalent to a block basic sequence (hn) of (ep

n).

Note that `p is perfectly homogeneous for all 1 ≤ p < ∞, so we may assume (an) is

equivalent to (ep
n). Thus, (an) is basic. Without loss of generality (S(an)) is a weakly

null, seminormalized basic sequence in X.

Similarly, one can find a weakly null, seminormalized sequence (bn) equivalent to (eq
n)

in `q. Since p′ ≤ q, there is a natural injection, U , from `p′ into `q which sends (ep′
n ) to (bn).

Hence, we have (bn) equivalent to U((ep′
n )), and without loss of generality R(U((ep′

n ))) =

(R(bn)) is a seminormalized basic sequence in Y . Therefore, by Theorem 3.2, co ↪→

Kw∗(X∗, Y ).

Case 3: p < q < p′.

Since p < q < p′, every operator from `q to `p is compact and every operator from

`p′ to `q is compact; i.e., Kw∗((`p)
∗, `q) = K(`p′ , `q) = L(`p′ , `q). In fact, this space of

compact operators is reflexive. Thus co cannot embed in Kw∗((`p)
∗, `q). In this case, let

X = `p, Y = `q, and let S : `p → `p and R : `q → `q be identity operators. �

In Lemma 3 of [15], Kalton showed that K(X, Y ) 6 c↪→ L(X, Y ) if Y is infinite dimen-

sional and `1
c
↪→ X. If Y is infinite dimensional, then BY is not compact ([4], Chapter

1). Thus, there is a δ > 0 and a sequence (yn) in BY with ‖yn − ym‖ > δ if n 6= m.

The operator T : `1 → Y defined by T (λ) =
∞∑

n=1

λiyi is clearly non-compact. Kalton

made crucial use of these strong properties on `1 and Y in the result just cited. The next

theorem extends Kalton’s result.

Theorem 3.4. Suppose `p
c
↪→ X where 1 < p < ∞ and there exists a noncompact

operator T : `p → Y . Then K(X,Y ) 6 c↪→ L(X, Y ).

Proof. The hypotheses guarantee that we can find a non-compact operator T , and

there exists a sequence (xn) in B`p and a δ > 0 such that ‖T (xn)− T (xm)‖ > δ if n 6= m.

Since `p is reflexive, B`p is weakly compact. Thus, without loss of generality we may

assume that (xn − xn+1) = (an) is weakly null. Observe that ‖T (an)‖ > δ for every
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n. Thus, (an) 6→ 0. Hence, (an) is weakly null and seminormalized. By the Bessaga-

Pelcznski Selection Principle (an) contains a subsequence (ank
) which is equivalent to a

block basic sequence (hn) of (ep
n). Now, using the fact that `p is perfectly homogeneous,

without loss of generality (an) is equivalent to (ep
n). Thus, (an) is basic. Without loss of

generality, the Bessaga-Pelcznski Selection Principle allows one to assume that (T (an))

is a seminormalized weakly null basic sequence in Y . Since (an) is an unconditional

basic sequence, co ↪→ K(X, Y ) by Theorem 20 of [13]. Hence, K(X, Y ) 6 c↪→ L(X, Y ) by

Theorem 3 of [17]. �

As noted in the remark immediately following Theorem 1.11, there are examples

where co embeds in Kw∗(X∗, Y ) and `∞ does not embed in Lw∗(X∗, Y ). Emmanuele [8]

showed that if X and Y are not Schur and co embeds in Kw∗(X∗, Y ), then `∞ embeds in

Lw∗(X∗, Y ). The next theorem shows that this implication is also valid if neither X nor

Y contains co.

Theorem 3.5. If co ↪→ Lw∗(X∗, Y ), co 6↪→ X, and co 6↪→ Y , then `∞ ↪→ Lw∗(X∗, Y ).

Proof. Let φ : co −→ Lw∗(X∗, Y ) be an isomorphic embedding.

Since
∞∑

n=1

en is wuc, we have

∞∑
n=1

|〈φ(en)(x∗), y∗〉| <∞,

for every x∗ ∈ X∗, y∗ ∈ Y ∗. Thus,
∞∑

n=1

φ(en)(x∗) is wuc in Y , and since co 6↪→ Y ,

∞∑
n=1

φ(en)(x∗) is unconditionally converging in Y .

Therefore if M is a nonempty subset of N, then
∑
n∈M

φ(en) converges unconditionally

in the strong operator topology (but certainly not in norm).

By the Uniform Boundedness Principle,{∑
n∈M

φ(en) : M ⊆ N,M 6= ∅

}

is bounded in the norm topology.
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Let P denote the power class of N, and define µ : P → Lw∗(X∗, Y ) by

µ(M) =


0 if M = ∅
∞∑

n=1

φ(en) (sot) if M 6= ∅

Observe that µ(M) is w∗ − w continuous, bounded, and finitely additive. However,

µ is not strongly additive as (µ({n})) = (φ(en)) 6→ 0.

Hence, by the σ-algebra version of the Diestel-Faires Theorem, `∞ ↪→ Lw∗(X∗, Y ). �

Recall that a Banach space X is uniformly convex if given ε > 0 there is a δ > 0 such

that whenever x, y ∈ SX and ‖x− y‖ = ε, then
∥∥x+y

2

∥∥ ≤ 1 − δ. Note that the idea of

uniform convexity involves keeping uniform control of convex combinations of points on

the sphere.

Theorem 3.6. (N. and V. Gurarii [4]) If the normalized Schauder basis (xn)∞n=1 spans

a uniformly convex space X, then there is a p > 1 and an A > 0 such that
∞∑

n=1

anxn ∈ X

whenever (an)∞n=1 ∈ `p and ∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥ ≤ A ‖(an)∞n=1‖p.

Theorem 3.7. If X is an infinite dimensional uniformly convex Banach space, then

there is a p > 1 so that if 1 ≤ q ≤ p or 1 ≤ q′ ≤ p, then K(`q, X) 6 c↪→ L(`q, X) and

K(`q′ , X) 6 c↪→ L(`q′ , X).

Proof. By [4] p.39 we may choose a normalized basic sequence (xn)∞n=1 in X. Note

that the sequence (xn) cannot converge to anything as ‖xn‖ = 1 for every n ∈ N and

(xn)
w→ 0. Use Theorem 3.6 and find p > 1 and an A > 0 satisfying∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ A ‖(an)∞n=1‖p.

If 1 ≤ q ≤ p, then the linear map L : `q → X which sends eq
n 7−→ ep

n 7−→ xn for all

n ≥ 1 is continuous, non-compact and satisfies the requirements of Theorem 3 of [17], i.e.

(ep
n) is an unconditional basic sequence in `q such that [ep

n]
c
↪→ `q, and {L(ep

n) : n ∈ N}

is not relatively compact. Therefore, K(`q, X) 6 c↪→ L(`q, X).
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On the other hand, suppose q′ is conjugate to q and 1 ≤ q′ ≤ p. Then define maps

J : `q′ → X which sends eq′
n 7−→ xn for n ≥ 1 and the identity, id, on `q. Observe that

(J(eq′
n )) is a weakly null, seminormalized basic sequence in X equivalent to (xn), and

id(eq
n) = (eq

n) is obviously a basic sequence. Hence, these maps satisfy the hypotheses of

Theorem 3.2.

Note that since q′ ≤ p every operator from `p to `q′ is compact; i.e., Kw∗((`q)
∗, `p) =

K(`q′ , `p).

Hence, co
c
↪→ K(`q′ , X). Therefore, K(`q′ , X) 6 c↪→ L(`q′ , X) by Theorem 3.4. �
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CHAPTER 4

A VECTOR-VALUED MEASURE INTERPRETATION AND

APPLICATIONS TO SPACES OF OPERATORS

As noted in the introduction, results of Feder have been instrumental in the study of

the complementation of K(X, Y ) in L(X, Y ). Specifically, Feder established the following

result in [10].

Theorem 4.1. For Banach spaces X and Y , if there exists a non-compact operator

T ∈ L(X,Y ) admitting an unconditional compact expansion, then K(X, Y ) is uncomple-

mented in L(X, Y ).

Suppose that Tn ∈ K(X, Y ) for each n ∈ N, T /∈ K(X, Y ), and
∞∑

n=1

T (x) converges

unconditionally to T (x) for all x ∈ X. Feder considered two cases: (a) There is a

y∗ ∈ Y ∗ so that
∞∑

n=1

T ∗n(y∗) is not weakly subseries convergent, i.e.
∞∑

n=1

T ∗n(y∗) is not

unconditionally convergent, and (b)
∞∑

n=1

T ∗n(y∗) is weakly subseries convergent.

In both cases, Feder appealed to results of Kalton [15] to conclude that K(X, Y ) is not

complemented in L(X, Y ). Moreover, Feder noticed that if X is infinite dimensional and

co ↪→ Y , then the hypotheses of Theorem 4.1 are satisfied. Emmanuele [7] subsequently

showed that Theorem 4.1 implies that co ↪→ K(X, Y ). See Theorem 2.6 in this paper for

an efficient proof using the Diestel-Faires Theorem. Of course, as remarked previously,

Emmanuele and John showed that if co ↪→ K(X, Y ) 6= L(X, Y ) (regardless of how co finds

its way isomorphically into the space of compact operators), then K(X, Y ) 6 c↪→ L(X, Y ).

None of these papers contained the following.

26



Theorem 4.2. Suppose that K(X, Y ) 6= L(X, Y ) and K(X, Y )
c
↪→ L(X, Y ). If (Tn) is a

sequence in K(X,Y ), then
∞∑

n=1

Tn is unconditionally convergent in the norm of K(X, Y )

if and only if
∞∑

n=1

Tn(x) is unconditionally converging in Y for every x ∈ X.

For the sake of continuity, we give a proof of Theorem 4.2 using Theorem 1.6. How-

ever, we note that subsequently in this chapter we give a proof of Theorem 1.6 which

does not involve results from any of these papers.

Proof. (of Theorem 4.2) Observe that evaluation at a point is a continuous and linear

operator. Therefore, if
∞∑

n=1

Tn is unconditionally converging, then
∞∑

n=1

Tn(x) is uncondi-

tionally converging for every x ∈ X.

Conversely, if
∞∑

n=1

Tn(x) is unconditionally converging for every x ∈ X and
∞∑

n=1

Tn

is not unconditionally converging, let π : N → N be a permutation of the natural

numbers, let ε > 0, and let (pi), (qi) be intertwining sequences of positive integers such

that

∥∥∥∥∥
qi∑

n=pi

Tπ(n)

∥∥∥∥∥ > ε for every i ∈ N. Let Li =

∥∥∥∥∥
qi∑

n=pi

Tπ(n)

∥∥∥∥∥ > ε. Then
∑

Li(x)

is unconditionally converging for every x ∈ X. Let F be the finite - co-finite algebra

of subsets of N, and note that the uniform boundedness principle and the pointwise

unconditional convergence of the series above guarantees that if

µ(A) =


∑
i∈A

Li if A is finite

−
∑
i6∈A

Li if N \ A is finite,

then µ is bounded and finitely additive. Since ‖µ(i)‖ 6→ 0, µ is not strongly additive,

and thus co ↪→ K(X, Y ). This is a clear contradiction of Theorem 1.6. �

Kalton showed in [15] that for a bounded linear operator T : `∞ → `∞ with T (en) = 0

for every n ∈ N, there exists an infinite subset M of N such that T (x) = 0 for every

x ∈ `∞(M). Kalton then established an operator theoretic version of this theorem: If X

is separable and T : `∞ → L(X, `∞) is an operator so that T (en) = 0 for all n ∈ N, then

there is an infinite set M ⊆ N so that T (x) = 0 for all x ∈ `∞(M).
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IfX is separable, then there are countably many functionals which separate the points

of L(X, `∞), i.e. if D is a countable dense subset of X and 0 6= T ∈ L(X, `∞), then there

exists an x ∈ D and n ∈ N so that 〈T (x), en〉 6= 0.

The first theorem in this chapter is a measure theoretic generalization of Kalton’s

results. Several corollaries which indicate applications to topics considered in this paper

will follow. The reader should note that any operator T : `∞ → X generates an X-valued

measure [5] via T (χA) = m(A) for A ⊆ N and T (x) =
∫
N
x dm.

Theorem 4.3. If µ : P → X is a bounded, finitely additive vector measure with µ({n}) =

0 for every n ∈ N and there are countably many elements of X∗ which separate the range

of a vector measure µ, then there exists an infinite set M ⊆ N such that µ(A) = 0 for

every A ⊆M .

Proof. Partition N into uncountably many infinite sets (Uα)α∈∆ such that Uα

⋂
Uβ is

finite if α 6= β. Note that µ

(⋃
i∈F

Ui

)
=
∑
i∈F

µ(Ui) for all finite subsets F ⊆ N.

We want to show that there exists an α ∈ ∆ such that µ(B) = 0 for every B ⊆ Uα.

Suppose not. Then for every α ∈ ∆ we can find Bα ⊆ Uα with µ(Bα) 6= 0.

Thus, we can find i ∈ N such that {α : x∗i (µ(Bα)) 6= 0} is uncountable. Without loss

of generality suppose x∗i (µ(Bα)) 6= 0 for every α ∈ ∆. Hence, without loss of generality

suppose x∗i (µ(Bα)) > 0 for every α ∈ ∆.

Choose p > 0 with W = {α : x∗i (µ(Bα)) > p} is uncountable. This produces a con-

tradiction since if F ⊆ W and F is finite, then

|F | · p ≤

∣∣∣∣∣x∗i
(∑

α∈F

µ(Bα)

)∣∣∣∣∣
≤

∣∣∣∣∣x∗i
(
µ

(⋃
α∈F

(Bα)

))∣∣∣∣∣
≤ ‖µ‖

= sup {‖µ(A)‖ : A ⊆ N}

For |F | large enough we have a contradiction to the inequality, and thus, the theorem is

proved. �
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The same conclusion can be obtained if the range space is replaced by L(X, Y ) with

X a separable space and Y the dual of a separable space.

If (yn) is a basic sequence in Y , (yn) is equivalent to (en), andX is infinite dimensional,

then Theorem 2.3 produces a normailzed w∗-null sequence in X∗ which immediately leads

to a family TM of non-compact operators: TM(x) =
∑
i∈M

x∗i (x)yi, where M is any infinite

subset of N. Feder used this construction to show that K(X, Y ) 6 c↪→ L(X, Y ) if co ↪→ Y .

The following corollary generalizes Feder’s result: IfX is infinite dimensional and co ↪→ Y ,

then K(X,Y ) 6 c↪→ L(X, Y ).

Corollary 4.4. Suppose Y contains a seminormalized unconditional basic sequence

(yi), and (PM)M⊆N is the family of projections associated with (yi). If U : X → [yi : i ≥ 1]

is an operator and Xo is a separable subspace of X so that PMU|Xo
is a non-compact

operator for every infinite subset M ⊆ N, then K(X, Y ) 6 c↪→ L(X, Y ).

Proof. By Phillips’s Theorem (Theorem 2.4), let J : Y → `∞ be an operator so that J is

an isometry on [yi : i ≥ 1]. Suppose by way of contradiction that Q : L(X, Y ) → K(X,Y )

is a projection and define µ : P → L(X, Y ) by µ(A) = PAU . Note that µ is bounded

and finitely additive. Also, JQµ({n}) = Jµ({n}) for each n ∈ N. Apply Theorem 4.3

and let M be an infinite subset of N so that Jµ(M)|Xo
is compact. But neither µ(M)|Xo

nor Jµ(M)|Xo
is compact, and we have a contradiction. �

The next result is a new proof of a theorem of Kalton. It follows as a corollary of

Theorem 4.3.

Corollary 4.5. If `1
c
↪→ X and Y is infinite dimensional, then K(X, Y ) 6 c↪→ L(X, Y ).

Proof. Let Q : X → `1 be a projection. By way of contradiction, suppose K(X, Y )
c
↪→

L(X, Y ). Since Y is infinite dimensional we can find a sequence (yn) in BY and a δ > 0

such that ‖yn − ym‖ > δ for n 6= m. Define µ : P → L(X, Y ) by

µ(M)(x) =
∑
n∈M

(Q(x))nyn

for M 6= ∅. Suppose, by way of contradiction, there is a projection P : L(X, Y ) →

K(X, Y ). By Phillips’s Theorem (Theorem 2.4) let J : Y → `∞ be an operator such
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that J|[yi] is an isometry. Observe that Jµ(A) : X → `∞, JPµ(A) : X → `∞ and

Jµ({n}) = JPµ({n}) for every n ∈ N. The equations remain valid if X is replaced by

`1, and we note that `1 is separable. Thus, Theorem 4.3 applies, and we obtain an infinite

subset M so that Jµ(M) is compact. Let n ∈ M and consider µ(M)(e∗n) = yn. Observe

that {yn : n ∈M} is not relatively compact. Thus, we have a contradiction. Therefore,

no such projection, P , exists, and K(X, Y ) 6 c↪→ L(X, Y ). �

The following corollary generalizes three results simultaneously: Corollary 4.5, The-

orem 3.4 of this paper, and Theorem 3(ii) in Lewis [17]. See the remarks preceeding

Corollary 4.4.

Corollary 4.6. Suppose (xn) is an unconditional basic sequence, [xn]
c
↪→ X, (PM)M⊆N

the family of projections associated with (xn), and T : [xn : n ≥ 1] → Y is an operator so

that no subsequence of (T (xn)) converges. Then K(X, Y ) 6 c↪→ L(X,Y ).

Proof. Let Q : X → [xn] be a projection, and let J : Y → `∞ be an operator such

that J is an isometry (by Phillips’s Theorem (Theorem 2.4)) on [T (xn) : n ≥ 1]. Define

µ : P → L(X,Y ) by µ(A) = TPAQ. If A is finite, µ(A) is compact. Suppose by way of

contradiction that P : L(X, Y ) → K(X, Y ) is a projection. Now µ and Pµ are bounded

and finitely additive, and µ({n})−Pµ({n}) = 0 for every n ∈ N. Let M be an infinite set

such that Jµ(M)|[xn]
= JPµ(M)|[xn]

. But TPMQ and JTPMQ are not compact. Thus,

we have a contradiction. �

Corollary 4.7. (Emmanuele [7], John [15])

If co ↪→ K(X,Y ), then K(X,Y ) is uncomplemented in L(X, Y )

Proof. By way of contradiction suppose P : L(X, Y ) → K(X, Y ) is a projection.

By Corollary 4.4, co 6↪→ Y . Let (Tn) be a sequence in K(X, Y ) equivalent to (en).

Observe that
∑

Tn(x) is weakly unconditionally converging in Y . Hence,
∑

Tn(x) is

unconditionally converging in Y since co 6↪→ Y . Define µ : P → L(X,Y ) by µ(A)(x) =∑
n∈A

Tn(x) for A ⊆ N. Let ν = P ◦ µ : P → K(X, Y ). This measure is bounded and

finitely additive but not strongly additive as ‖ν({n})‖ = ‖P (µ({n}))‖ = ‖P ({en})‖ 6→ 0.
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Therefore, by the Diestel-Faires Theorem `∞ ↪→ K(X, Y ). By a result of Kalton [15] this

implies either `∞ ↪→ X∗ or `∞ ↪→ Y .

If `∞ ↪→ Y , then we must have co ↪→ Y , but this is a contradiction. Thus, `∞ ↪→ X∗.

Hence, `∞ ↪→ X∗, and `1
c
↪→ X ([2], [15]).

Therefore, by Corollary 4.6, we have K(X, Y ) 6 c↪→ L(X, Y ). �

Corollary 4.8. (Bator and Lewis [3])

Suppose `1
c
↪→ X and Y is a non-reflexive Banach space. Then W (X, Y ) 6 c↪→ L(X,Y ).

Proof. Let Q : X → `1 be a projection. Since Y is infinite dimensional we can find a

sequence (yn) in BY with no weakly convergent subsequence. Define µ : P → L(X, Y )

by

µ(M)(x) =
∑
n∈M

(Q(x))nyn

for M 6= ∅. By way of contradiction, suppose that there is a projection P : L(X, Y ) →

W (X,Y ). Let J : Y → `∞ be an operator such that J|[yi] is an isometry (by Theorem 2.4).

Observe that Jµ(A) : X → `∞, JPµ(A) : X → `∞ and Jµ({n}) = JPµ({n}) for every

n ∈ N. The equations remain valid ifX is replaced by `1, and we note that `1 is separable.

Thus, Theorem 4.3 applies, and we obtain an infinite subset M so that Jµ(M) is weakly

compact. Let n ∈ M and consider µ(M)(e∗n) = yn. Observe that {yn : n ∈M} is not

relatively weakly compact. Thus, we have a contradiction. Therefore, no such projection,

P , exists, and W (X, Y ) 6 c↪→ L(X, Y ). �

A Banach space X is said to be prime if every infinite-dimensional complemented

subspace of X is isomorphic to X. For A any subset of N we denote by `∞(A) the

subspace of `∞ given by

`∞(A) = {ξ = (ξ(k))∞k=1 ∈ `∞ : ξ(k) = 0 if k /∈ A}.

In 1960, Pelczynski [19] showed that co and `p, for 1 ≤ p < ∞, are prime. In

particular, he proved: If E is a subspace of co or `p, for 1 ≤ p < ∞, X is a subspace

complmented in E and X contains a subspace Y complemented in X and isomorphic to

E, then X is isomorphic to E. In his main theorem he proved the following: Let E

be one of the spaces s, `p, for 1 ≤ p < ∞, or co. Then each subspace complemented
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in E is isomorphic to E or is of finite dimension. In 1967, Lindenstrauss [18] proved

that `∞ is also prime. One might ask if co is complemented in `∞ as it is certainly a

subspace of `∞ (its bidual). As stated in the introduction, `∞ contains an isometric copy

of all separable Banach spaces, and a separable Banach space can only be injective if it is

isomorphic to a complemented subspace of `∞. Certainly, co will be injective if and only

if it is complemented in `∞. However, in 1940, R. S. Phillips proved that c (the space

of convergent sequences) is not complemented in `∞, and the following year A. Sobczyk

proved the result for co. Classifying the subspaces of `∞ has been an important topic of

study. The following is a vector measure theoretic version of the proof that `∞ is prime

and is significantly shorter than the original proof by Lindenstrauss.

Let S(Σ, X) be the linear space of all X-valued simple functions defined on a σ-

algebra, Σ, i.e. S(Σ, X) =

{
n∑

i=1

αiχAi
: Ai ∈ Σ, αi ∈ R

}
. Then for any f ∈ S(Σ, X),

f(χ) =
n∑

i=1

χAi
xi for Ai ∈ Σ, xi ∈ X. Let T : S(Σ, X) → Y be a continuous linear

transformation defined by T (χA(x)) = µ(A)(x) =
∫
χAdµ. Thus, the measure is literally

defined directly by the action of the operator on the simple functions. Let U(Σ, X) be

the uniform closure of S(Σ, X). The simple functions are dense in U(Σ, X), and any

continuous linear map from the simple functions can be extended to the uniform closure.

Observe that `∞ = U(P ,R) where P is the power class of N, and co = U(R,R) where

R is the ring of all finite subsets of N. Note that R is closed under finite unions, relative

complements and intersections.

Corollary 4.9. If X is a complemented subspace of `∞ and en ∈ X for every n ∈ N,

then X contains an isomorphic (and complemented) subspace isomorphic to `∞.

Proof. Suppose P : `∞ → X is a projection, and let ν : P → `∞ be defined by

ν(A) = P (χA), A ∈ P . Let µ : P → `∞ be defined by µ(A) = χA, A ∈ P .

If m(A) = µ(A) − ν(A), A ∈ P , then m({n}) = 0 for every n ∈ N. Observe m

is bounded, finitely additive, and m takes its values in `∞, a space with a countable

separating family of functionals. Therefore, by Theorem 4.3, there exists an infinite

subset M ⊆ N such that m(A) = 0 for every A ⊆ M . Whence, ν(A) = µ(A) for every

A ⊆ M . Now, `∞(M) is obviously isomorphic to `∞ and
∫
ψdν = ψ for all simple
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functions ψ ∈ `∞(M) (i.e., ν generates the identity). It follows that
∫
ξdν = ξ for all

ξ ∈ `∞(M). Therefore, `∞(M) ⊆ X. �

Let E = `p, 1 ≤ p < ∞, co, or `∞. As noted previously, Pelczynski showed that if

X is complemented in E and X contains a subspace Y complemented in X and Y is

isomorphic to E, then X is isomorphic to E [19].

The previous theorem showed that if X is complemented in `∞ and co embeds in X,

then X contains `∞(M) for some infinite M ⊆ N. Clearly, `∞(M) is complemented in

`∞ and is therefore complemented in X, and `∞(M) is isomorphic (even isometric) to

`∞.

Now suppose that X is complemented in `∞ and co does not embed in X. Let P

be a projection from `∞ onto X, and let m be the vector measure generated by P , i.e.

P ↔ m : P → X. Note that m must be strongly additive by the Diestel-Faires Theorem

since co does not embed in X. Thus, by Theorem 1, p. 148 of [5], P is weakly compact.

Now, `∞ is a C(K)-space, and all weakly compact operators on any C(K)-space map

weakly convergent sequences to norm convergent sequences (p. 113 of [4]). If (xn) is a

sequence in BX , then there exists a subsequence (xni
) converging weakly to some element

in BX . This implies P ((xni
)) = (xni

) is norm convergent. Therefore, P is completely

continuous. Thus, P 2 must be compact. Consequently, the unit ball of X must be

relatively compact. (P is a projection onto X, and P must map the unit ball of `∞ onto

the unit ball of X.) Thus, X must be finite dimensional.

Consequently, if X is a complemented subspace of `∞, then X is infinite dimensional

if and only if X contains co and X is isomorphic to `∞.

In Chapter 1 strongly additive measures were discussed in detail; in particular, the

Diestel-Faires Theorem was used to demonstrate applications of strongly additive mea-

sures. Theorem 4.3 provides an easy way to see that a strongly additive vector measure

is almost countably additive.

Corollary 4.10. (Drewnowski [5], p. 38) If X is separable, Σ is a σ-algebra of sets,

µ : Σ → X is strongly additive, and (Ai) is a pairwise disjoint sequence from Σ, then

there is a subsequence (Ani
) so that µ is countably additive on the σ-ring generated by

this subsequence.
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Proof. Let S =
⋃

i∈S Ai where the {Ai} are a pairwise disjoint sequence from Σ. Identify

i with Ai and set ν(S) =
∑
i∈S

µ(Ai). Then ν({i}) = µ({i}) for all i ∈ S. Apply

Theorem 4.3. �

The Diestel-Faires Theorem provided us with an elegant, almost existential, proof of

Theorem 4.2. We conclude this paper by using Theorem 4.3 to give a constructive proof

of Theorem 4.2.

SupposeX and Y are separable, {xn : n ≥ 1} is dense inX, {yn : n ≥ 1} is dense in Y ,

and {y∗n : n ≥ 1} is a norming set of functionals inBY ∗ . That is, ‖y‖ = sup {y∗n(y) : n ≥ 1}.

Let U : X → Y be an operator, and suppose U∗ 6= 0. Therefore, U 6= 0, and

there exists a y∗n ∈ Y ∗ such that U∗(y∗n) 6= 0. Therefore, there exists k ∈ N such that

〈U∗(y∗n), xk〉 6= 0. Note that U∗∗(η(xk)) = η(U(xk)) 6= 0.

Now suppose
∞∑
i=1

Ti is unconditionally converging with respect to the strong operator

topology, and
∞∑
i=1

T ∗i is unconditionally converging with respect to the strong operator

topology. We assert that

(∑
i∈A

Ti(sot)

)∗

=
∑
i∈A

T ∗i (sot). (The operators are defined

pointwise.) In fact,〈(∑
i∈A

Ti(sot)

)∗

(y∗), x

〉
=

〈(∑
i∈A

Ti(sot)

)
x, y∗

〉

=

〈∑
i∈A

Ti(x), y
∗

〉
=

∑
i∈A

〈Ti(x), y
∗〉

=
∑
i∈A

〈T ∗i (y∗), x〉

=

〈∑
i∈A

T ∗i (y∗), x

〉
.

Therefore,

(∑
i∈A

Ti(sot)

)∗

=
∑
i∈A

T ∗i (sot).

Theorem 4.11. Suppose Tn : X → Y is compact for every n ∈ N, X and Y are

separable,
∞∑

n=1

Tn(x) is unconditionally converging for every x ∈ X and
∞∑

n=1

T ∗n(y∗) is
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unconditionally converging for every y∗ ∈ Y ∗. Further suppose Tn ∈ K(X, Y ) for every

n ∈ N and P : L(X, Y ) → K(X, Y ) is a projection.

Proof. Define µ : P → L(Y ∗, X∗) by

µ(A) =

(∑
i∈A

Ti(sot)− P

(∑
i∈A

Ti(sot)

))∗

=

(∑
i∈A

Ti(sot)

)∗

−

(
P

(∑
i∈A

Ti(sot)

))∗

=
∑
i∈A

T ∗i (sot)−

(
P

(∑
i∈A

Ti(sot)

))∗

,

for all A ⊆ N. Certainly, µ({n}) = 0 for every n ∈ N. Now, if µ(A) 6= 0, then∑
i∈A

Ti(sot)− P

(∑
i∈A

Ti(sot)

)
6= 0.

Therefore, there exists xn and y∗k such that〈∑
i∈A

Ti(sot)− P

(∑
i∈A

Ti(sot)

)
xn, y

∗
k

〉
6= 0.

Thus, µ(P) is countably separated. Hence, there exists an infinite subset M of N such

that µ(A) = 0 for every A ⊆M .

Whence,
∑
i∈A

T ∗i (y∗) = P

(∑
i∈A

Ti(sot)

)∗

(y∗) for every y∗ ∈ Y ∗. Therefore,
∑
i∈A

T ∗i (y∗)

defines a compact operator for every A ⊆M .

Now consider Corollary 3 (page 269) of Kalton [15] with repect to
∑
i∈M

T ∗i (sot) and∑
i∈A

T ∗i (sot) for A ⊆M . We know by the Orlicz-Pettis Theorem (Theorem 2.7) that every

subseries converging weakly to a point in the space implies the series is unconditionally

converging. Therefore, the series
∑
i∈M

Ti is unconditionally converging. Thus, the full

series
∞∑

n=1

Tn is unconditionally converging. �
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