A Temperature-Controlled Chamber Based on Vortex Cooling

PDF Version Also Available for Download.

Description

We describe the construction and performance of a temperature-controlled chamber, based on a 'vortex' cooler. The chamber is capable of operation between room temperature and -42 C. The only nontrivial infrastructure requirement is dry compressed gas at 100 psi and 8 cfm. The chamber is economical, easy to operate and to build using commercially available parts. Since the refrigerant is compressed air, the chamber has minimal environmental impact. It does not generate mechanical vibrations nor electrical noise. It is suitable for testing electronically sensitive and low-power electronics at cold temperatures. We measured the reserve cooling capacity of the cold plate ... continued below

Physical Description

7 pages

Creation Information

Krider, John & Nguyen, Hogan November 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We describe the construction and performance of a temperature-controlled chamber, based on a 'vortex' cooler. The chamber is capable of operation between room temperature and -42 C. The only nontrivial infrastructure requirement is dry compressed gas at 100 psi and 8 cfm. The chamber is economical, easy to operate and to build using commercially available parts. Since the refrigerant is compressed air, the chamber has minimal environmental impact. It does not generate mechanical vibrations nor electrical noise. It is suitable for testing electronically sensitive and low-power electronics at cold temperatures. We measured the reserve cooling capacity of the cold plate to be 17 watts at -27 C. At the limiting temperature of -42 C, reserve cooling power reduces to zero.

Physical Description

7 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-07-604-E
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 921333
  • Archival Resource Key: ark:/67531/metadc902933

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 26, 2017, 6:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krider, John & Nguyen, Hogan. A Temperature-Controlled Chamber Based on Vortex Cooling, article, November 1, 2007; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc902933/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.