Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers

PDF Version Also Available for Download.

Description

Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, ... continued below

Physical Description

8 p.

Creation Information

Moens, L. & Blake, D. M. March 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

Physical Description

8 p.

Source

  • 2008 14th Biennial CSP SolarPACES (Solar Power and Chemical Energy Systems) Symposium, 4-7 March 2008, Las Vegas, Nevada (CD-ROM) (NREL/CD-550-42709)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: AC36-99-GO10337
  • DOI: 10.2172/924987 | External Link
  • Office of Scientific & Technical Information Report Number: 928605
  • Archival Resource Key: ark:/67531/metadc902848

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 6, 2017, 2:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moens, L. & Blake, D. M. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers, article, March 1, 2008; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc902848/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.