Unconventional Magnetism in Low Carrier Density Systems and Nanoparticle Composites

PDF Version Also Available for Download.

Description

Under the auspices of this funding, we have developed a program to synthesize and characterize highly monodispersed magnetic nanoparticles. We have been particularly interested in the origin of the exchange bias effect, which occurs in compound nanoparticles with a ferromagnetic core and an antiferromagnetic shell, and have mostly focused on Co/CoO core-shell nanoparticles. The exchange bias effect involves exchange coupling between the core moment and the antiferromagnetic shell which stabilizes the core moment, which would otherwise be quickly reorienting in ferromagnetic particles of this size.

Creation Information

Aronson, Meigan C June 14, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Under the auspices of this funding, we have developed a program to synthesize and characterize highly monodispersed magnetic nanoparticles. We have been particularly interested in the origin of the exchange bias effect, which occurs in compound nanoparticles with a ferromagnetic core and an antiferromagnetic shell, and have mostly focused on Co/CoO core-shell nanoparticles. The exchange bias effect involves exchange coupling between the core moment and the antiferromagnetic shell which stabilizes the core moment, which would otherwise be quickly reorienting in ferromagnetic particles of this size.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/45526-1
  • Grant Number: FG02-94ER45526
  • DOI: 10.2172/932227 | External Link
  • Office of Scientific & Technical Information Report Number: 932227
  • Archival Resource Key: ark:/67531/metadc902847

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 14, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 7, 2016, 3:25 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Aronson, Meigan C. Unconventional Magnetism in Low Carrier Density Systems and Nanoparticle Composites, report, June 14, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc902847/: accessed April 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.