Microwave Treatment as a Pesticide Alternative for Stored-Products

PDF Version Also Available for Download.

Description

This CRADA was a continuation of earlier work with Micro-Grain, Inc. to develop power, high frequency microwave treatment process to treat insect infested grain. ORNLs role was as a subcontractor to Micro-Grain's Phase II SBIR project funded by the US Department of Agriculture. The primary objective was to develop a commercial scale prototype unit capable of treating infested grain at flow rates approaching 1 kg/sec, which is required to be viable in the grain handling industry. A flow rate of {approx} 0.12 Kg/second was demonstrated at 20 kW microwave power level with 100% kill rate. The system is capable of ... continued below

Physical Description

192 Kb

Creation Information

Bigelow, T.S.; Forrester, S.C.; Halverson, S.; Halverson, B. & Phillips, T. May 21, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This CRADA was a continuation of earlier work with Micro-Grain, Inc. to develop power, high frequency microwave treatment process to treat insect infested grain. ORNLs role was as a subcontractor to Micro-Grain's Phase II SBIR project funded by the US Department of Agriculture. The primary objective was to develop a commercial scale prototype unit capable of treating infested grain at flow rates approaching 1 kg/sec, which is required to be viable in the grain handling industry. A flow rate of {approx} 0.12 Kg/second was demonstrated at 20 kW microwave power level with 100% kill rate. The system is capable of 200 kW however waveguide arcing due to grain dust in the waveguide limited the power to 20 kW during the tests. Development tasks performed during the project included modification of an existing high-power microwave exposure facility to uniformly process large grain samples at high flow rates and improved instrumentation to detect grain flow and uniformity. Microwave processing tasks include a series of controlled exposure tests using infested grain samples provided and analyzed by the University of Oklahoma. Grain samples were infested with red flour beetles which proved the most difficult to kill in earlier tests. Most of the samples processed resulted in quite successful kill rates and a maximum grain temperature of 46 C. The facilities utilized at ORNL are located in the Fusion Energy building (9201-2 at Y-12) and include the 28 GHz 200 kW CW high power microwave facility and microwave test equipment associated with the FED Microwave Development Laboratory in 9201-2. An improved microwave exposure chamber and grain flow control and handling equipment were designed and build as a joint effort between Micro-Grain and ORNL. A number of insect infested grain tests were successfully performed although the higher power, higher flow rates were limited by arcing in the microwave waveguide and damage to the gyrotron output window. Test results and the overall performance of the applicator system are very favorable for continued development of the concept. Further tests were performed in a large high power 2.45 GHz microwave applicator in batches. These samples were also quite effectively treated which supports the concept that a lower cost, lower frequency microwave system might be more successful due to the improved economics and simpler operation and maintenance of the low frequency system. Follow-on work is still possible however the untimely death of Steve Halverson, founder of Micro-grain, has essentially brought the development work to a close for now. Micro-Grain is being run by relatives at a low level who are not actively pursuing further funding.

Physical Description

192 Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL00-0531
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/940384 | External Link
  • Office of Scientific & Technical Information Report Number: 940384
  • Archival Resource Key: ark:/67531/metadc902814

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 21, 2003

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 4, 2016, 7:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bigelow, T.S.; Forrester, S.C.; Halverson, S.; Halverson, B. & Phillips, T. Microwave Treatment as a Pesticide Alternative for Stored-Products, report, May 21, 2003; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc902814/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.