Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

PDF Version Also Available for Download.

Description

Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at today’s output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and ... continued below

Creation Information

Robertson, Eric P. October 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at today’s output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.

Source

  • Society of Petroleum Engineers 2008 Eastern Regional Meeting,Pittsburgh, Pennsylvania,10/11/2008,10/15/2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-08-14637
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 941738
  • Archival Resource Key: ark:/67531/metadc902794

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 18, 2016, 6:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 1
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Robertson, Eric P. Improvements in Measuring Sorption-Induced Strain and Permeability in Coal, article, October 1, 2008; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc902794/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.