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We present converged, completely ab initio calculations of the triple differential cross sections
for double photoionization of aligned H2 molecules for a photon energy of 75.0 eV. The method of
exterior complex scaling, implemented with both the discrete variable representation and B-splines,
is used to solve the Schrödinger equation for a correlated continuum wave function corresponding to
a single photon having been absorbed by a correlated initial state. Results for a fixed internuclear
distance are compared with recent experiments and show that integration over experimental angular
and energy resolutions is necessary to produce good qualitative agreement, but does not eliminate
some discrepancies. Limitations of current experimental resolution are shown to sometimes obscure
interesting details of the cross section.
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I. INTRODUCTION

Double photoionization (DPI) is a process in which
two electrons are ejected from an atom or molecule as
the result of absorption of a single photon. Since the
process is controlled by the dipole operator, which is a
one-body operator, it cannot be accurately treated with
an independent particle description of the target or the
final-state dynamics. For that reason, double photoion-
ization represents a powerful way to probe electron cor-
relation. The problem has been extensively investigated,
both experimentally and theoretically, for the case of he-
lium. For the simplest two-electron molecule, H2, DPI is
followed by a “Coulomb explosion” of the resulting two
bare protons. Since this latter process is generally rapid
compared to molecular rotation, the relative momentum
vector of the dissociating nuclei defines the alignment of
the molecule at the instant of photon absorption and al-
lows one to measure differential ionization cross sections
of “fixed-in-space” molecules, provided all four charged
particles that emerge from the process are measured in
coincidence. The advent of “momentum imaging” detec-
tors have made measurements of this type feasible and
several experiments on DPI of aligned molecular hydro-
gen have recently been reported [1–4]. The interpreta-
tion of such detailed data pose a significant challenge to
ab initio theory.

In the double photoionization of helium, the manifesta-
tion of dipole selection rules and the patterns observed in
the triple differential cross sections (TDCS) are now well
understood [5–10]. The degree to which such selection
rules survive in the molecular case has been previously
discussed [11]. Some proposals, based on the use of ap-
proximate wave functions, about the kinds of behaviours
that occur in the molecular case have appeared [12], along
with proposed atomic-like model calculations [13] and
approximate parameterizations of the entire TDCS us-
ing models based on the atomic case [14]. When av-
eraged over molecular orientations, the TDCS patterns

for molecular hydrogen are very similar to those for he-
lium [15] and the model calculations work rather well in
describing that behavior. However, the TDCS reported
for aligned H2 reveal striking effects of an entirely molec-
ular nature, such as pronounced changes in the patterns
of electron ejection that depend on both the orientation
of the molecular axis with respect to the photon polar-
ization as well as molecular bond distance. Simple mod-
els fail to explain these effects completely and precise
quantum theoretical treatments are required to unam-
biguously unravel the origin of the effects observed.

The initial steps towards a precise quantum solution of
the molecular problem were taken a few years ago using
grid-based time-dependent close-coupling [16] and exte-
rior complex scaling (ECS) approaches [17]. These ini-
tial studies only produced integral cross sections. We
have since extended the ECS approach to the computa-
tion of TDCS for double photoionization of aligned H2,
and the first results of this treatment were recently an-
nounced [18]. In this paper we give a detailed descrip-
tion of the computational procedures employed, present
a comprehensive set of numerical results and compare the
results with available experiment.

The outline of this paper is as follows. The theoreti-
cal formulation is given in Sec. II. Section IIA reviews
the ECS approach and presents the first-order equation
for the scattered wave that describes double photoion-
ization. We also derive an expression for the DPI am-
plitude and the molecular distorted waves needed in its
evaluation. In Sec. II B we give definitions of the TDCS
in terms of the integral amplitudes, give single-center
expansion formulae for the scattered wave and for the
continuum H+

2 distorted waves, as well as working ex-
pressions for the single and triple differential DPI cross
sections. Section IIC discusses our treatment of nuclear
motion within the Born-Oppenheimer approximation. In
Sec. III we describe the two different numerical imple-
mentations of ECS used in this work. We briefly review
the use of complex-scaled B-splines, as well as the use of
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our complex-scaled finite-element/discrete variable rep-
resentation. Section IV details the various tests we have
carried out to insure the numerical results we are pre-
senting are converged. Section V presents our computed
results and Sec. VI shows how the results compare with
available experiments. This section also details the av-
eraging over finite ranges of ejection angles, molecular
orientations and energy sharing that must be performed
to be able to compare the calculated results with the mea-
sured quantities. Section VII contains our conclusions.

II. FORMULATION OF THE MOLECULAR
DOUBLE PHOTOIONIZATION PROBLEM

A. Exterior Complex Scaling Approach

The amplitude for double photoionization is associated
with the purely outgoing wave function Ψ+

sc that is the so-
lution of the driven Schrödinger equation — the so-called
“first order wave function” obtained when we treat the
radiation field as a perturbation. That equation can be
written in the “velocity form” for a two-electron problem
using atomic units (~ = me = e = 1) as

(E0 + ω −H)|Ψ+
sc〉 = ε · (∇1 +∇2)|Ψ0〉 (1)

where ε is the polarization unit vector, ∇1 and ∇2 are
the gradient operators for the electronic coordinates, and
|Ψ0〉 is the initial (bound) state of the target. The key
difficulty in double photoionization calculations is the ap-
plication of proper outgoing wave scattering boundary
conditions on Ψ+

sc for the three-body Coulomb breakup
problem.

Those boundary conditions can be applied rigorously,
as discussed in a recent review [19], by transforming the
radial coordinates of both electrons according to the “Ex-
terior Complex Scaling” (ECS) transformation [20, 21]
which scales those coordinates by a complex factor,
exp(iη) beyond some radius R0, as shown in Fig. 1

r →
{

r r ≤ R0

R0 + (r −R0)e
iη r > R0

(2)

and requiring Ψ+
sc(r1, r2) → 0 when either of the elec-

tronic coordinates goes to infinity. The reason is that
applying the ECS transformation to the electronic radial
coordinates in Eq. (1) causes all purely outgoing solu-
tions, regardless of the number of electrons in the con-
tinuum, to decay exponentially for any ri > R0.

Solving Eq. (1) for the first order wave function in this
manner, with R0 having been chosen large enough to al-
low Ψ+

sc(r1, r2) to reach its asymptotic form where both
coordinates are real valued, provides us with the physi-
cal wave function in the region where both coordinates
are less than R0. We are thus faced with the problem
of extracting the double photoionization amplitude from
a wave function we only know on a finite volume. A
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FIG. 1: Color online. Exterior complex scaling in a single
radial dimension. (a) ECS contour in the complex plane. (b)
Eighth-order B-splines on the ECS contour with R0 = 50 and
a scaling angle of 40◦; thin lines are real B splines and heavy
dark and light lines are real and imaginary parts, respectively,
of complex B-splines. (c) Seventh-order FEM/DVR functions
plotted over two elements; the dashed curve is the central
bridging function which connects the basis functions in the
two adjacent elements.

procedure for doing so for the case of atomic double pho-
toionization (or electron-impact ionization) is now well
established [10, 19, 22]. The double photoionization am-
plitude of the helium atom, for example, can be given as
a volume integral involving Ψ+

sc and a pair of distorted
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waves or “testing functions,”

f(k1,k2) =
〈

Φ(−)
c (k1, r1)Φ

(−)
c (k2, r2)

∣

∣

∣
E − T − V1

∣

∣

∣
Ψ+

sc

〉 (3)

where E is the total energy, T is the two-electron kinetic
energy operator, and V1 is the sum of all one-electron
potentials for the atom

V1 = −Z/r1 − Z/r2 . (4)

The Φ
(−)
c (k, r) are Coulomb functions normalized to a

delta function in momentum and with effective charge
Z. The integral in Eq. (3) can be performed over the
finite volume enclosed by the radius R0 and has been
shown to produce the physical breakup amplitude aside
from a knowable, but irrelevant, overall phase [19, 23].
While formally we may choose any charges for the testing
functions and the potential V1 in Eq. (4), the choice of
Z = 2 causes them to be orthogonal to the bound states
of He+, thereby removing any contribution to the integral
in Eq. (3) from single ionization that leaves the ion in any
state that is effectively contained within R0. With this
amplitude f(k1,k2) in hand, the Triple Differential Cross
Section (TDCS) cross section for double photoionization
of a two electron atom is given by

d3σ

dE1dΩ1dΩ2
=

4π2

ωc
k1k2

∣

∣f(k1,k2)
∣

∣

2
. (5)

B. The molecular double photoionization
amplitude

1. The amplitude integral

To calculate the TDCS for double photoionization of
H2 we require the molecular analog of Eq. (3). That
expression is

f(k1,k2) =
〈

Φ(−)(k1, r1)Φ
(−)(k2, r2)

∣

∣

∣

[

E − T − v(r1)− v(r2)
]

∣

∣

∣
Ψ+

sc(r1, r2)
〉

,
(6)

where E is the excess energy above the double ionization
threshold, T is the two-electron kinetic energy operator,
and v(r) is the nuclear attraction potential seen by one
electron in the field of the bare nuclei. The functions
Φ(−)(k, r) are thus H+

2 continuum eigenfunctions with
incoming momentum k. While there are other choices of
testing functions that are formally equivalent, this choice
is optimal for our purposes because the orthogonality of
the H+

2 continuum eigenfunctions to the bound states of
H+

2 eliminates the contributions of the single ionization
channels to Eq. (6) in the same way that the choice of
Z = 2 Coulomb functions does so for the case of he-
lium. It must be emphasized again that the product of

testing functions is not the physical final state wave func-
tion. The physical final state for double ionization is con-
tained in the function Ψ+

sc. As discussed previously [19],
this integral expression merely extracts the amplitude for
double ionization from Ψ+

sc.

2. H+
2 continuum functions

For the molecular case, even the one-electron test-
ing functions in Eq. (6) pose a computational challenge.
They are the continuum states of the H+

2 ion in the
Born-Oppenheimer approximation where the two elec-
trons leave behind two bare protons, positioned at ±A.
Thus for the one-electron testing functions Φ(−), we must
use in this case are solutions of
[

k2

2
+
∇2

2
+

1

|r−A| +
1

|r + A|

]

Φ(−)(k, r) = 0 , (7)

and satisfy the usual relation, Φ(−)(k, r) =
[

Φ(+)(−k, r)
]∗

. Our goal is to define a procedure
for evaluating Eq. (6) to arbitrary accuracy, thereby
producing an effectively exact value of the fixed-nuclei
double photoionization amplitude within the Born-
Oppenheimer approximation. We therefore require a
procedure for exactly calculating the continuum wave
functions of H+

2 .
To do so we convert Eq. (7) into a driven equation for

the scattered wave part of Φ(+). Because the incoming
wave part of the solution is determined by the long range
behavior of the potential in Eq. (7) it is the same as that
of the atomic Coulomb problem with Z = 2. Therefore
we can write the H+

2 wave function as

Φ(+)(k, r) = χ(k, r) + Φ(+)
c (k, r) (8)

with the “unperturbed” portion being the standard (Z =

2) Coulomb function, Φ
(+)
c (k, r), whose incoming mo-

mentum specifies the direction of k. The scattered wave
portion χ(k, r) of the exact H+

2 continuum function then
satisfies the driven Schrödinger equation
(

k2

2
− h
)

χ(k, r) =

(

h− k2

2

)

Φ(+)
c (k, r)

=

(

2

r
− 1

|r−A| −
1

|r + A|

)

Φ(+)
c (k, r)

(9)

with h being the one-electron Hamiltonian in Eq. (7).
Since χ is an outgoing wave, the correct boundary con-
ditions can be imposed using the ECS transformation as
described above.

We require the solution of Eq. (9) for any direction of

the momentum in Φ
(+)
c (k, r). In the body-fixed frame

we can write that solution as a single center expansion of
the form

Φ+(k, r) =
∑

l,m,l′

ϕll′m(r, k)Ylm(k̂)Yl′m(r̂) , (10)



4

where we have made use of the fact that m is a good
quantum number. To construct the effective radial func-
tions, ϕll′m(r, k) we need to make the appropriate single
center expansion of the quantities in Eq. (8). First, we
write the standard expansion of the momentum normal-
ized Coulomb function

Φ(+)
c (k, r) =

(

2

π

)1/2
∑

l,m

ileiηl

kr
φ

(c)
l,k(r)Ylm(r̂)Y ∗

lm(k̂)

(11)

where φ
(c)
l,k(r) is the radial Coulomb function with asymp-

totic form sin(kr + (Z/k) ln 2kr − lπ/2 + ηl(k)), and the
Coulomb phase is

ηl(k) = arg Γ(l + 1− iZ/k) . (12)

We can then define a set of solutions of the driven
Schrödinger equation with right hand sides proportional
to an incident Coulomb function with a single Yl0m0

(E − h)χl0,m0(r) = (h− E)
φ

(c)
l0,k

(r)

kr
Yl0,m0

(r̂) . (13)

Next, we make a single center expansion of the function
χl0,m0(r),

χl0,m0(r) =
∑

l

Rl0m0

l (r)

r
Ylm0

(r̂) , (14)

of course choosing the z-axis to coincide with Â, and
using the fact that m is a good quantum number. The
result is a set of coupled equations for the outgoing radial
functions Rl0m0

l corresponding to an incident Coulomb
wave with angular momentum quantum numbers l0 and
m0, that must be solved for every l0 and m0 that we are
considering in the expansion basis:

∑

l

{

δl′,l

[

E −
(

− 1

2

d2

dr2
+
l(l + 1)

2r2

)

]

− vm0

l′,l (r)

}

Rl0m0

l (r)

=

[

vm0

l′,l0
(r) +

2

r
δl′,l0

]

1

k
φ

(c)
l0,k

(r) ,

(15)

where

vm0

l′,l (r) =

∫

dr̂ Y ∗
l′m0

(r̂)

(

− 1

|r−A| −
1

|r + A|

)

Ylm0
(r̂) .

(16)
However, since parity is conserved the sum

∑

l is re-
stricted to even (odd) values if l0 is even (odd).

The complete solution of Eq. (9) can be constructed for
any direction of k as a linear combination of the solutions
of Eq.(15),

χ(k, r) =
∑

l0,m0

il0eiηl0Y ∗
l0,m0

(k̂)χl0,m0(r)

=
∑

l,l0,m0

il0eiηl0Y ∗
l0,m0

(k̂)
Rl0m0

l (r)

r
Ylm0

(r̂) .

(17)

The resulting single center expansion of the H+
2 scattering

eigenstates in the body-fixed frame is thus

Φ(+)(k, r) =

(

2

π

)1/2
∑

l,m

ileiηl(k)Y ∗
lm(k̂)

∑

l′

∆l,l′

(

φ
(c)
l,k(r)

kr
δl,l′ +

Rlml′

r

)

Yl′m(r̂) ,

(18)

and has the form of Eq. (10). In Eq.(18) the factor ∆l,l′

is unity if l + l′ is even and zero otherwise. The first
sum ranges over the values of l and m for the incident
waves, while the second sum is over the outgoing waves
with l′ for a particular l and m of the incident wave. As
described below in Sec. III, we can construct the radial
functions Rlml′ (r) by expanding them in a basis of discrete
functions, and substituting that representation back into
Eq. (15) to obtain linear equations for their coefficients.

3. The partial wave double ionization amplitudes

With the one-electron continuum states of H+
2 in hand,

we turn to the calculation of the two-electron continuum
function, Ψ+

sc, in Eq. (1). We can write that wave func-
tion, for a fixed value of the projection M of the elec-
tronic angular momentum along the molecular axis and
for singlet spin coupling, as a sum of products of two-
dimensional radial wave functions and spherical harmon-
ics

Ψ+(M)
sc =

∑

µ1µ2,j1≥j2

(

ψdir
j1µ1,j2µ2

(r1,r2)

r1r2
Yj1µ1

(r̂1)Yj2µ2
(r̂2)

+
ψexch

j1µ1,j2µ2
(r1,r2)

r1r2
Yj2µ2

(r̂1)Yj1µ1
(r̂2)

)

. (19)

In Eq. (19) we have partitioned the wave function into
direct and exchange components by employing an explic-
itly symmetrized representation for singlet spin coupling,
but we should point out that it would also be possible to
use an unsymmetrized representation with sums over j1
and j2 unrestricted except by parity. In the case that Ψ0

is the 1Σ+
g ground state of H2, the outgoing state, Ψ+

sc,

can have only 1Σ+
u (M = 0) or 1Πu (M = ±1) symmetry.

Thus, for the case at hand, if j1 is even j2 must be odd
and vice versa to produce ungerade symmetry in Ψ+

sc, sig-
nificantly reducing the size of the computations. The ra-
dial functions ψdir

j1µ1,j2µ2
(r1, r2) and ψexch

j1µ1,j2µ2
(r1, r2) are

then expanded in products of B-splines or of Discrete
Variable Representation (DVR) basis functions, so that
the Hamiltonian matrix elements corresponding to the
l.h.s. of Eq. (1) are the same as those in a “complete
configuration interaction” calculation in that basis.

The amplitude for double ionization expressed as a six-
dimensional volume integral in Eq. (6) can be recast using
Gauss’ theorem as a five-dimensional surface integral on
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a sphere of constant ρ in hyperspherical coordinates,

f(k1,k2) =

∫

dΩ1

∫

dΩ2

∫

dρ

∫ π/2

0

dα
ρ5 sin2 α cos2 α

2

Φ(−)(k1, r1)
∗Φ(−)(k2, r2)

∗

[←−
∂

∂ρ
δ(ρ− ρ0)− δ(ρ− ρ0)

−→
∂

∂ρ

]

Ψ+
sc(r1, r2)

(20)

where the notation of the partial derivatives with re-
spect to the hyperradius means that they operate to the
left and right as indicated and the delta functions con-
strain the integration to the surface of the hypersphere.
The hyperspherical coordinates are ρ =

√

r21 + r22 and
tanα = r2/r1, in addition to the normal spherical polar
angles we have denoted Ω1 and Ω2. This surface integral
is written in a form that allows us to make direct use of
the radial functions from calculations performed in ordi-
nary spherical coordinates, instead of the more familiar
hyperradial functions [24] of ρ in this coordinate system.

We can now substitute the partial wave expansions
of the two one-electron test functions Φ(−)(k1, r1) and
Φ(−)(k2, r2) (given by Φ(+)(−k, r)∗) and the two-electron
wavefunction of Eq. (19) into the surface integral ex-
pression for the amplitude in Eq. (20). Integrating over
dΩ1 and dΩ2 yields an expression for the double ion-
ization amplitude for a particular value of M . Be-
cause of the orthogonality of the spherical harmonics,
the integration over angles Ω1 and Ω2 connects outgoing
waves of the two-electron wavefunction with a particu-
lar Yj1µ1

(r̂1)Yj2µ2
(r̂2) to the corresponding components

of the two one-electron testfunctions,

f (M)(k1,k2) =
∑

l1,µ1

∑

l2,µ2

(

2

π

)

i−l1−l2eiηl1
(k1)+iηl2

(k2)

[

Yl1µ1
(k̂1)Yl2µ2

(k̂2)
∑

j1≥j2

F dir
l1l2j1µ1j2µ2

(k1, k2)∆j1l1∆j2l2

+Yl1µ2
(k̂1)Yl2µ1

(k̂2)
∑

j1≥j2

F exch
l1l2j1µ1j2µ2

(k1, k2)∆j2l1∆j1l2

]

,

(21)

where M = µ1 + µ2, and again, the factor ∆j,l is unity
if j + l is even and zero otherwise. The direct radial
amplitude in this expression is the surface integral for
particular angular components,

F dir
l1,l2,j1,µ1,j2,µ2

(k1, k2) =
ρ0

2

∫ π/2

0

dα

(

φ
(c)
l1,k1

(r1)

k1
δl1,j1 +Rl1µ1

j1
(r1)

)

(

φ
(c)
l2,k2

(r2)

k2
δl2,j2 +Rl2µ2

j2
(r2)

)

[←−
∂

∂ρ
−
−→
∂

∂ρ

]

ρ=ρ0

ψdir
j1µ1,j2µ2

(r1, r2) ,

(22)

and the corresponding exchange amplitude can be got-
ten from this expression by interchanging j1, µ1 and
j2, µ2 on the r.h.s. in the test functions (but not in the
wave function,ψexch

j1µ1,j2µ2
). Each two-electron radial func-

tion corresponding to a particular angular component
Yj1µ1

(r̂1)Yj2µ2
(r̂2) produces a set of these direct (or ex-

change amplitudes). This is true because a number of
radial one-electron test functions with values l1 and l2 for
their incident Coulomb waves can have outgoing waves
with angular momenta j1µ1 and j2µ2. Further details
about the relation between direct and exchange ampli-
tudes are contained in the Appendix.

We can simplify the expression in Eq. (21) by per-
forming the sums over the angular momenta j1 and
j2 that are associated with the single center expansion

of Ψ
+(M)
sc and thereby defining “reduced amplitudes,”

F
dir,exch (M)
l1,l2,µ1,µ2

(k1, k2)

f (M)(k1,k2) =
∑

l1,µ1

∑

l2,µ2

(

2

π

)

i−l1−l2eiηl1
(k1)+iηl2

(k2)

[

F
dir (M)
l1,l2,µ1,µ2

(k1, k2)Yl1µ1
(k̂1)Yl2µ2

(k̂2)

+ F
exch (M)
l1,l2,µ1,µ2

(k1, k2)Yl1µ2
(k̂1)Yl2µ1

(k̂2)
]

.

(23)

Note that with this notation only one of the two reduced

amplitudes, F
dir,exch (M)
l1,l2,µ1,µ2

(k1, k2), is nonzero in each term
of these sums.

To construct the TDCS for arbitrary orientations of the
polarization vector relative to the axis of the molecule in
the body-fixed frame, we require the amplitudes for all
three values of M . For a given direction of the polar-
ization vector, a convenient working expression for the
double ionization amplitude for a given direction of the
polarization vector, ε̂ = (ε̂x, ε̂y, ε̂z), in the body fixed
frame, is

f(k1,k2, ε̂) =
(ε̂x + iε̂y)√

2
f (−1)(k1,k2) + ε̂zf

(0)(k1,k2)

+
(−ε̂x + iε̂y)√

2
f (+1)(k1,k2)

(24)

where the amplitudes f (M), defined by Eq. (21 or 23),
are constructed from the solutions of Eq. (1) for M =
(0,±1) with the appropriate spherical component of the
dipole operator in the driving term. In the length rep-
resentation those components of the dipole operator are

µM =
[

r1

√

4π
3 Y1,M (Ω1) + r2

√

4π
3 Y1,M (Ω2)

]

. The corre-

sponding operator components in the velocity form, in
which Eq. (1) is written, are given by Rose [25]. Note
that the Cartesian components of the polarization vec-
tor are expressed here in the molecule-fixed coordinate
system with the internuclear axis as the z-axis.

The single differential cross section (SDCS) can be
expressed in a way that closely resembles the atomic
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case [10] by using the reduced amplitudes F defined in
Eq. (23) whose indices label the incoming waves of the
H+

2 continuum functions:

dσ(M)

dE1
=

4π2

ωc
k1k2

(

2

π

)2

(25)

∑

l1>l2,µ1,µ2

[

∣

∣F
dir (M)
l1,l2,µ1,µ2

(k1, k2)
∣

∣

2
+
∣

∣F
exch (M)
l1,l2,µ1,µ2

(k1, k2)
∣

∣

2
]

,

where we have taken advantage of homonuclear symme-
try and the fact that l1 6= l2 to restrict the sum over
those indices. For linearly polarized incident radiation
and randomly oriented molecules the physical SDCS has
contributions from all three M values, and we can write
it in the form

dσ

dE1
=

1

3

(

dσ(Σ)

dE1
+ 2

dσ(Π)

dE1

)

. (26)

The integral cross section is the integral of this SDCS
from 0 to E, the energy of the photon above the double
photoionization threshold.

C. Born-Oppenheimer Approximation

In deriving an expression for the double photoion-
ization amplitude, we have implicitly made use of the
Born-Oppenheimer approximation to separate electronic
and nuclear motion. Thus the ionization amplitude
f(k1,k2;R) is an electronic quantity that depends para-
metrically on the internuclear separation R. The experi-
mentally observed quantity however is not R, but rather
the nuclear kinetic energy release (KER), or equivalently,
by energy conservation, the sum of the kinetic energies
of the ejected electrons. So the next task is to see how
the TDCS corresponding to specific values of KER are
computed from the fixed-nuclei amplitudes computed for
different values of R.

In the following, we will assume that there is no in-
teraction between vibrational and rotational motion so
that the rotational wave functions can be factored out.
Moreover, we assume that following photon absorption,
the nuclei fly apart along a vector that remains station-
ary (i.e. does not rotate) in the laboratory frame. This
assumption is known as the axial recoil approximation

and is certainly valid when the rotational temperature
of the target gas is low and the photon energy is well
above threshold, which is the case we wish to consider.
We further assume the validity of the Born-Oppenheimer
approximation, which allows us to factor the total wave
functions, both for the initial bound target state and the
final continuum state, into products of electronic and
vibrational functions. With these assumptions, we can
write the ionization amplitude as:

Fκ(k̂1, k̂2, ε̂) =

∫ ∞

0

dR χκ(R)f(k1,k2, ε̂;R)χ0(R) ,

(27)

where κ labels the KER and χ0(R) and χκ(R) are the
initial (bound) and final (energy-normalized continuum)
vibrational wave functions, respectively. In the present
case, the latter is simply the repulsive Coulomb function
corresponding to two bare protons, satisfying:

(

− 1

2µ

d2

dR2
+

1

R
− κ2

2µ

)

χκ(R) = 0 . (28)

In the context of electron-molecule scattering, where
f(k1,k2;R) would be replaced by a fixed-nuclei T -
matrix, this treatment is called the adiabatic nuclei ap-

proximation and Eq. (27) is frequently referred to as
Chase’s approximation [26].

There is an ambiguity that arises in the adiabatic nu-
clei approximation concerning the proper choice of elec-
tron energy in the fixed-nuclei electronic amplitude, since
the latter depends only parametrically on R and has no
explicit dependence on target vibrational energies. This
can be a problem when trying to compute cross sec-
tions near thresholds. In electronically elastic electron-
molecule scattering, for example, where the fixed-nuclei
amplitude depends on a single energy parameter, there is
no unique prescription for choosing the electron energy
when treating vibrational excitation [27]. The idea of us-
ing an off-shell T -matrix in such cases has proven to be
a useful expedient [27–29].

In the case of photoabsorption, where free electrons ap-
pear only in the final state, there is less ambiguity about
how to choose the free-electron energy. In dissociative
photoionization, which we are considering here, the fixed-
nuclei excitation energy to the dissociative state changes
rapidly with internuclear distance, which is a factor that
must be accounted for when deciding how to partition
the photon energy between the free electrons and the
dissociating nuclei. The physical situation is illustrated
in Fig. 2, which shows the target potential energy curves
for the initial and final states, the associated bound and
continuum nuclear wave function and the various ener-
gies involved. Formally, for a given photon energy hν, the
observable KER can range from zero to hν + Eo, where
Eo is the initial (negative) target energy, where the zero
of energy is chosen as separated electrons and nuclei. In
practice, the range of detectable KERs, as well as the
range of R-values required in evaluating the integral in
Eq. (27), is determined by the Franck-Condon envelope
of the the initial vibrational state reflected onto the final
dissociative potential curve.

The kinetic energy release and the photoelectron ener-
gies (see Fig. 2) are related by energy conservation:

E0 + hν = ε1 + ε2 +
κ2

2µ
. (29)

For a fixed photon energy, there are an infinite number
of energy sharings between electrons and nuclei that sat-
isfy Eq. (29). Once the KER is specified, the final nuclear
continuum state of Eq. (28) and the total photoelectron
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FIG. 2: Color online. Double photoionization of H2. The
molecule is excited from the X1Σ+

g state (lower curve) to the
double continuum consisting of bare protons (upper curve)
and two free electrons with energies ε1 and ε2. Also shown
are the v=0 ground state (dashed) and final (light solid) vi-
brational wave functions. E0 is the initial target energy and
the upper dashed line indicates the total (target plus photon)
energy. The Franck-Condon interval is the range of R-values
between Rinner and Router. Rc is the classical turning point
along the upper potential curve for a specified value of nu-
clear kinetic energy release (KER). See text for description of
a scheme for evaluating the ionization amplitude in the adia-
batic nuclei approximation which involves an integration over
R (corresponding to the upper dash-dot curve), in which ε1

and ε2 are kept fixed (broken arrows on upper curve).

energy are determined. We must then decide which fixed-
nuclei amplitudes to employ in performing the R-integral
required in Eq. (27). One possibility is to construct, at
each value of R, the amplitude for the specified photo-
electron energies. This procedure was used by Sánchez
and Mart́ın in studying dissociative photoionization of
H2 [30] and by Stibbe and Tennyson [31] in an analogous
study of near-threshold electron impact dissociation of
H2.

In the case of double ionization, such a procedure is
extremely demanding since the R-dependent amplitudes
required in the evaluation of Eq. (27 (corresponding to
an integration along the upper dash-dot curve in Fig. 2)
must be recalculated for each different value of KER.
In our approach we would solve the driven Schrödinger
equation

(ε1 + ε2 −Helec(R)) |Ψ+
sc(R)〉 = ε · (∇1 +∇2)|Ψ0(R)〉

(30)
where Helec(R) is the electronic Hamiltonian. The sum
of the electron energies, ε1+ε2, is determined by Eq. (29)
for each value of the KER.

However, in these calculations we have employed a sim-
plifying approximation. We first note that the inner and
outer classical turning points of the molecule in its initial

vibrational state place effective upper and lower bounds
on the observable values of KER. When the photon en-
ergy is well above the Franck-Condon threshold, the con-
tinuum nuclear wave function χκ(R) oscillates rapidly
beyond its classical turning point Rc, which will neces-
sarily lie between Rinner and Router over the range of ob-
servable KER. In such cases, the R-integral in Eq. (27)
is well approximated by the method of stationary phase,
the stationary phase point coinciding with the classical
turning point, Rc. The resulting simplification is that, if
χκ is an energy-normalized continuum function,

Fκ(k̂1, k̂2, ε̂) =

∫ ∞

0

dR χκ(R)f(k1,k2, ε̂;R)χ0(R)

≈
∫ Router

Rinner

dR

∣

∣

∣

∣

dV

dR

∣

∣

∣

∣

−1/2

δ(R−Rc)f(k1,k2, ε̂;R)χ0(R)

=

∣

∣

∣

∣

dV

dR

∣

∣

∣

∣

−1/2

R=Rc

f(k1,k2, ε̂;Rc)χ0(Rc) .

(31)

This essentially classical result states that, for purposes
of evaluating the integral in Eq. (27), the continuum nu-
clear wave function can be replaced by a δ-function at the
classical turning point and thus, in this limit, there is a
one-to-one mapping between KER and internuclear dis-
tance. We have verified by explicit computational tests
that this approximation is well justified for the conditions
we are considering here.

With the inclusion of the nuclear degree of freedom we
are ready to define the fully differential cross section in
the body fixed frame for a particular orientation of the
polarization vector relative to the molecular axis,

d6σ

dE1dENdΩ1dΩ2
=

4π2

ωc
k1k2

∣

∣

∣
Fκ(k̂1, k̂2, ε̂)

∣

∣

∣

2

(32)

where EN = κ2/2µ, E1 is the energy of one of the elec-
trons, and the solid angles are for the two electrons. The
polarization vector and the directions of the electron mo-
menta are in this expression measured relative to the
molecular axis. Rotating the three vectors, k1,k2, ε̂, to-
gether around the molecular axis simply rotates the cross
section about that axis in this frame.

The dependence of the fixed-nuclei TDCS on internu-
clear separation along with a detailed treatment of the
nuclear dynamics will be explored in a subsequent publi-
cation. Since the results we are reporting here are for cal-
culations all carried out at the equilibrium internuclear
distance and since we will be comparing with experimen-
tal results integrated over available kinetic energy release,
we will make a final simplifying approximation. Substi-
tuting the amplitude from Eq. (31) into Eq. (32) and
integrating over EN using EN = 1/Rc gives

d5σ

dE1dΩ1dΩ2
=

4π2

ωc
k1k2

∫

dR
∣

∣

∣
χ0(R)f(k1,k2, ε̂;R)

∣

∣

∣

2

.

(33)
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Since χ0(R) is strongly peaked about the equilibrium in-
ternuclear distance Req, it is a reasonable approximation
to replace f(k1,k2, ε̂;R) by f(k1,k2, ε̂;Req) and take it
outside the integral in Eq. (33):

d5σ

dE1dΩ1dΩ2
≈ 4π2

ωc
k1k2

∣

∣

∣
f(k1,k2, ε̂;Req)

∣

∣

∣

2
∫

dR χ0(R)2

=
4π2

ωc
k1k2

∣

∣

∣
f(k1,k2, ε̂;Req)

∣

∣

∣

2

.

(34)

III. DISCRETIZATION OF THE DRIVEN
SCHRÖDINGER EQUATION AND NUMERICAL

METHODS FOR ITS SOLUTION.

ECS is most easily implemented by using numerical
grid methods or with basis functions that have compact
support so that the derivative discontinuity at R0 can be
handled exactly. For the present study, we will present
results using two independent implementations of ECS.
These two separate computational efforts provide a pow-
erful check on the consistency of the results obtained and
allow us to better assess the convergence of the final re-
sults. In our earlier studies of DPI we used B-splines,
which are easily adapted to handle ECS [32]. This al-
lowed us to exploit a well developed existing technol-
ogy [33, 34], which we had previously used in our stud-
ies of He double ionization [10, 35] and in our initial
studies of H2 DPI [18]. We have since developed a sec-
ond implementation that uses finite-element/DVR func-
tions [36] in a single-center expansion of the problem.
The FEM/DVR offers an independent check on the re-
sults, as we have said, and also has some distinct compu-
tational properties that should provide an efficient path
to larger systems. The two methods are briefly summa-
rized below.

A. B-splines

B-spline methods are well established as widely ap-
plicable tools for the evaluation of atomic and molec-
ular continuum states [17, 33, 34]. Implementation of
B-splines in the context of ECS was first proposed by
McCurdy and Mart́ın [32]. Details of the ECS/B-spline
method can be found in the latter reference, so only a
brief summary is given here. B-splines that scale ac-
cording to the ECS transformation are simply defined by
setting a series of knots ti ≤ ti+1 on the complex con-
tour and by using the usual recursion relation [37] for
B-splines of order k,

Bki (r) =
r − ti

ti+k−1 − ti
Bk−1
i (r)+

ti+k − r
ti+k − ti+1

Bk−1
i+1 (r) (35)

together with the definition of B-splines of order k = 1

B1
i (r) =

{

1 for ti ≤ r < ti+1

0 otherwise
. (36)

Once the recursion is taken to third order (k = 3) one has
a set of the familiar (smooth) quadratic splines. Higher
orders provide more spline functions in the basis cover-
ing successively larger numbers of knots as the order is
increased (only k B-splines are different from zero at a
given value of r). They also give more continuous deriva-
tives as the order is increased. A basis of B-splines is
defined by a grid of breakpoints, ξi, coinciding with the
knots, ti (which may be multiple), that appear in the
recursion relation above. In most applications, multiple
knots are only used near the borders (e.g. at the origin to
provide more flexibility in this region). Thus the number
of knots is only slightly larger than the number of break-
points. The breakpoints can be placed arbitrarily on this
contour but one of them and its corresponding knot must
be placed at ti = R0. In this way, Bki has a discontinuous
first derivative with respect to r at r = R0, because the
derivative of the contour itself is discontinuous at that
point. The discontinuity in the first derivative of all the
B-splines that span the point R0 is essential to repro-
duce that of the exact wave function. The middle panel
of Fig. 1 shows a typical B-spline basis of order k = 8
and the discontinuities of the first derivatives at r = R0.
Only B-splines that straddle the point R0 have both real
and imaginary components. All other B-splines are real,
whether they are on the complex part of the contour or
not.

With the above definitions, all one-electron matrix ele-
ments are reduced to sums of complex integrals between
breakpoints. In each interval, the integrals are performed
using a Gauss-Legendre quadrature. Only those integrals
involving B-splines that are both different from zero in a
given interval need to be evaluated. For the two-electron
problem, we construct a product basis by combining B-
spline functions for each radial electron coordinate with
spherical harmonics for the angular variables. A ”con-
figuration” in the B-spline representation is thus given
by

Θijab(r1, r2) = A
[

Bi(r1)

r1
Ylama

(r̂1)
Bj(r2)

r2
Ylbmb

(r̂2)

]

≡ A
[

Φi,a(r1)Φj,b(r2)
]

(37)

where A is, respectively, the symmetrization or antisym-
metrization operator for singlet or triplet spin multiplic-
ity. For simplicity in the notation, the order of the B-
splines k has been omitted. It is straightforward to con-
struct a representation of the Hamiltonian in this basis.
The two-electron integrals, for example, are of the form

〈

A
[

Φi,a(r1)Φj,b(r2)
]

∣

∣

∣

1

|r1 − r2|
∣

∣

∣
A
[

Φk,c(r1)Φl,g(r2)
]

〉

(38)
and are evaluated by making a multipole expansion of
the interelectron repulsion. The angular portions of the
two-electron matrix elements are evaluated analytically,
while the radial portions are best handled by mapping
the problem to an equivalent one involving the solution
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of Poisson’s equation in an exterior complex-scaled B-
spline basis. We refer the interested reader to ref. [32]
for details.

In these calculations we used an ECS radius of R0 =
40 a0, and an ECS scaling angle of η = 30◦. Tests of
convergence of the calculations with respect to various
computational prameters are presented below in Sec. IV.
The combined B-splines and spherical harmonics repre-
sentation converts Eq. (1) into coupled linear equations.
Using angular momenta up to five leads to 22 coupled
pairs of angular momenta for the two electrons in Σu
symmetry. Using 60 8th order B-splines for each angular
momentum then produces a Hamiltonian matrix of order
N = 79 200. Corresponding calculations in Πu symme-
try give 35 coupled pairs of angular momenta and the
driven equation is of order N = 126 000. The number of
non-zero matrix elements is about 0.9% of the matrix.

B. Finite-Element/ Discrete Variable
Representation

The discrete variable representation provides a numer-
ical grid on which to perform the calculation, as well as
an underlying expansion basis that allows the computed
wave functions to be evaluated as a continuous function
of the coordinates. The DVR was combined with the
finite-element approach by Rescigno and McCurdy [36].
This extension allows for the treatment of exterior com-
plex scaling by simply choosing the point R0 to coincide
with one of the finite-element boundaries.

Details of the FEM/DVR method can be found in
ref. [36] and in our recent review [19], so only a brief
summary is given here. The DVR we use is built from a
basis of normalized Lagrange interpolating polynomials-
defined on the interval [a, b]:

fi(x) = w
−1/2
i

∏

j 6=i

x− xj
xi − xj

. (39)

These functions have the property that, when evaluated
at the points {xi},

fi(xj) = δi,j/
√
wi . (40)

The points {xi} and weights {wi} are in turn derived
from a Gauss-Lobatto quadrature [38], which is similar
to the more familiar Gauss-Legendre quadrature, except
that two of the points are constrained to coincide with
the interval endpoints. Under the Gauss quadrature rule,
the functions are orthonormal and provide a diagonal
representation of any local operator

∫ b

a

fi(x)V (x)fj(x) dx ≈
n
∑

k=1

fi(xk)V (xk)fj(xk)wk

= V (xi)δi,j .

(41)

The kinetic energy operator is not diagonal in the DVR
basis, but its matrix elements are given by simple ana-

lytic formulas [36]. Since Gauss-Lobatto quadrature ex-
plictly includes the end points as quadrature points, it is
possible to combine this particular variety of DVR with
the finite-element method. We simply divide the ECS
contour for the radial coordinate of each electron into
one-dimensional finite elements with one of the bound-
aries coinciding with the point R0 where the real and
complex parts of the contour join.

For the full problem, we again construct (unsym-
metrized) product basis functions Ω by combining DVR
functions for each radial electron coordinate with spher-
ical harmonics for the angular variables:

Ωijab(r1, r2) =
fi(r1)

r1
Ylama

(r̂1)
fj(r2)

r2
Ylbmb

(r̂2) . (42)

The one-electron nuclear attraction and two-electron re-
pulsion integrals are again evaluated by making a mul-
tipole expansion of the operators and carrying out the
angular parts of each integral analytically, reducing the
problem to the evaluation of radial integrals. For exam-
ple, the radial portion of the two-electron integrals that
must be evaluated are of the form

〈ij||kl〉 =

∫ rmax

0

dr

∫ rmax

0

dr′ fi(r)fk(r)
r`<
r`+1
>

fj(r
′)fl(r

′) .

(43)
Gauss-Lobatto quadrature gives a poor approximation
for the integrations in Eq. (43), because it effectively
expands the derivative discontinuity in the potential
r`</r

`+1
> in a basis of polynomials. However we can re-

store the validity of the underlying Guass quadrature by
replacing the integral with an equivalent Poisson differ-
ential equation which is solved using the DVR represen-
tation. Details can be found in [19]. The key result is
that the DVR again gives a diagonal representation of
the radial two-electron matrix elements

〈ij||kl〉 ∝ δi,kδj,l . (44)

This property simplifies the evaluation of the Hamilto-
nian, which has a sparse structure in the DVR repre-
sentation. For example, using 15th-order DVR with 6
finite elements gives 83 radial functions for each elec-
tron. With lmax = 7, there are 168 two-electron angu-
lar configurations and the size of the Hamiltonian ma-
trix is N = 168 × 832 = 1157 352. However, of the
N2 ≈ 1.3× 1012 Hamiltonian elements, only ≈ 2.2× 108

are non-zero. For this reason, we found it practical to
carry out calculations in the FEM/DVR representation
using an unsymmetrized basis and were able to system-
atically increase the number of angular terms until the
results were converged. A final point to bear in mind is
that, although the solution of the first-order equation in
the FEM/DVR basis gives the wave function at discrete
radial points, the underlying basis has a continuous rep-
resentation given by Eq. (39), which allows us to evaluate
the wave function at any desired point. The continuous
representation simplifies the computation of the surface
integrals over the hypersphere needed in the evaluation
of the ionization amplitudes.
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C. Iterative methods of solution of the linear
equations

After discretization of the radial degrees of freedom
using the basis functions discussed in the previous sec-
tion, Eq. (1) becomes a set of linear equations of the form
Ax = b in which the matrix A is sparse, complex sym-
metric and indefinite. We use a Krylov subspace iterative
method to find a solution. The approach is similar to
the methods used to solve the electron impact ionization
problem for hydrogen [39].

The convergence of iterative methods, in general, is
determined by the location of the eigenvalues of A in
the complex plane [40]. In our problem, the matrix A
represents the complex scaled Hamiltonian of a scatter-
ing problem and has most of its eigenvalues lying in the
fourth quadrant of the complex plane. Many of these
eigenvalues accumulate in a small region close to the ori-
gin, but there are also series of eigenvalues that start
from the origin and spread out into the fourth quadrant.
This distribution of eigenvalues of the matrix A leads to
a large condition number (ratio of largest eigenvalue to
the smallest eigenvalue) and the straightforward applica-
tion of an iterative method to this problem leads to very
slow convergence.

Instead of solving the matrix Ax = b, we choose to
solve the matrix problem M−1Ax = M−1b that has the
same solution x. However, we construct a matrix, M ,
such that the product, M−1A, has a spectrum that leads
to fast convergence of the iterative methods. Rewrit-
ing the matrix problem like this is a well known form
of “preconditioning” and the mathematical properties of
this procedure are well understood [41].

We derive a matrix M from A by reducing A to a
block diagonal form through neglect of the coupling el-
ements between the angular parts of the basis func-
tions. The basis functions Θijab (or Ωijab) have angu-
lar parts Ylama

(r̂1)Ylbmb
(r̂1), and when the two-electron

Hamiltonian is discretized with these basis functions,
the nuclear attraction and the electron-electron repul-
sion will introduce non-zero matrix elements between
different basis function with angular quantum numbers
lamalbmb and la′ma′ lb′mb′ . The preconditioning matrix
M is constructed by neglecting these angular couplings,
but keeping the radial couplings between the basis func-
tions within each lamalbmb block of the matrix. Thus,
the preconditioning matrix is

M ijab,i′j′a′b′

= 〈Θijab|H − E|Θi′j′a′b′〉δlala′
δlblb′ δmama′

δmbmb′

= Aijab,i′j′a′b′δlala′
δlblb′ δmama′

δmbmb′
.

(45)

The matrix M has now a block diagonal structure with
blocks that are n2 by n2, where n is the number of radial
basis functions. The spectrum of the matrix M also has
most of its eigenvalues in the fourth quadrant of the com-
plex plane, similar to the full matrix A, but at slightly

different locations.
It is, therefore, no surprise that the matrix M−1A has

its eigenvalues clustered around one with a ratio of the
largest to the smallest eigenvalue of approximatly two.
Such a problem is easily solved with a Krylov subspace
method. We find the solution using the Generalized Min-
imum Residual method to machine precision within 50
iterations in the case of the B-spline calculations, and
within 20 interations when using the FEM/DVR basis.
Each step of the preconditioned Krylov iteration requires
the solution of the matrix problem Mx′ = v. This prob-
lem, however, is much less demanding to solve than the
original problem, since the blocks of M are not coupled.
It is solved block by block with a direct solver.

IV. CONVERGENCE TESTS

All of the calculations reported here were carried out
at the equilibrium internuclear distance Req = 1.40 bohr.
We begin by examining the convergence with respect to
the number of angular momenta included in the expan-
sions of both the H+

2 wave function in Eq. (18) and the

outgoing wave function Ψ
+(M)
sc in Eq. (19). The same

maximum value of l was used in both expansions. For
this test we choose an example geometry for which the
TDCS is small and involves roughly equal contributions
from the Σu (M = 0) and Πu (M = ±1) components
of the wave function. Figure 3a shows that the velocity
gauge results using the FEM/DVR radial basis are con-
verged except for very minor details when angular mo-
menta up to l = 5 have been included and that by l = 6
the calculations are converged to graphical accuracy even
for the small TDCS values.

A comparison of results in the length and velocity
gauges in calculations including up to l = 7 using the
FEM/DVR radial basis is presented in Fig. 3b, and shows
that the two gauges produce graphically indistinguish-
able cross sections. This comparison is typical of the
TDCS for other geometries of molecular orientation and
outgoing electrons as well, and it is a test of the complete-
ness of both the angular and radial basis being used. It
is also, of course, a test of the quality of the initial state
wave function. In earlier calculations [18], we tested the
variation of the TDCS with increasing the maximum an-
gular momentum included in the initial state from l = 6
to l = 8, and found no changes. We conclude that calcu-
lations using up to l = 7 in both initial and final states
are effectively converged with respect to angular momen-
tum contributions.

It is instructive, when discussing convergence with re-
spect to angular momentum, to contrast the behavior of
low and high partial-wave radial components of the full
scattered wave. Fig. 4 shows two such components for the
case of a fully converged calculation in Σu symmetry. The
interesting thing to note, apart from the relative magni-
tudes of the two components, is the fact that, while the
single ionization contributions to the wave function are
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FIG. 3: Color online. Convergence of calculated TDCS. In
this example, the molecule, ejected electrons, and polariza-
tion vector are coplanar, and the TDCS, plotted as function
of one ejection angle θ2. Angle between molecule and polar-
ization axis is θmol = 20◦ and angle between fixed electron
(with 80 percent of available energy) and polarization axis is
θ1 = 40◦. (a) Convergence of the velocity representation as a
function of partial-wave angular momentum lmax. Numbers
labeling curves refer to the maximum value of l included. (b)
Length- and velocity-gauge results for TDCS from DVR cal-
culations with lmax = 7. (c) Convergence with hyperradius
at which amplitude is extracted. ECS radius R0 is fixed at
35 a0 while amplitude is computed at three different values of
hyperradius. (d) Convergence with increasing R0. Hyperra-
dius ρ at which the amplitiude is calculated is fixed at 24 a0,
while value of R0 is varied.

clearly visible in the low partial-wave component along
the left edge of the figure, the high partial-wave com-
ponent contributes only to double ionization. This is a
striking indication of the fact that DPI probes parts of
the wave function that reveal the effects of electron cor-
relation.

The surface integral integral in Eq. (22) encloses a fi-
nite volume of hyperradius ρ0, and a key question about
the convergence of these calculations is whether that fi-
nite volume is large enough to allow accurate extraction
of the physical amplitude for double ionization. We test
the dependence of the calculated TDCS on ρ0 in Fig. 3c,
where we find no visible changes in the computed dou-
ble ionization cross section once ρ0 is greater than about
30 a0.

Finally, we comment on the results of varying the ECS
parameters R0 and η. We show in Fig. 3d that vary-
ing R0 from 25 a0 to 45 a0 again leaves the TDCS un-
changed to graphical accuracy. Convergence with respect
to R0 is another test of the effective completeness of the
radial basis. The variation of η from 25◦ to 40◦ pro-
duces even smaller changes in the TDCS, and this sta-
bility is a consequence of the fact that both the B-spline
and FEM/DVR bases treat the derivative discontinuity
of the ECS wave function at R0 exactly [19].

FIG. 4: Color online. Real part of partial wave components

of the full scattered wave function Ψ
+(0)
sc for (l1, m1, l2, m2) =

(2, 0, 1, 0) (upper) and (4,−4, 7, 4) (lower). The magnitude
of the wave function scale is given by the length of the z-
axis with magnitude 1.0 × 10−2 a−1

0 (upper), 1.0 × 10−5 a−1
0

(lower). The ranges of r1 and r2 are zero to 35.0 bohr.
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FIG. 5: Color online. Comparison of TDCS computed using
DVR and B-splines. The geometry is the same as in Fig. 3.
Shown are results for a B-spline and DVR calculation using
lmax = 5, and also a DVR calculation using lmax = 7.
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FIG. 6: Upper panel: SDCS for photon energy of 75 eV com-
puted at equilibrium internuclear distance, showing Πu and
Σu contributions of Eq. (26). Integral cross section is the in-
tegral of this SDCS from 0 to Etot. Lower panel: β parameter
for the same photon energy and internuclear distance.

Comparing the FEM/DVR and B-spline results in the
velocity gauge using angular momenta up to l = 5 in
Fig. 5 shows only very small differences of the order of a
few percent. This comparison verifies that the initial re-
sults for the TDCS from B-spline calculations presented
in reference [18] were converged. The fact that most of
the numerical details of those two calculations are dif-
ferent lends additional confidence to the calculations we
present here. We note however that several of the TDCS
plots in reference [18] were mislabeled with respect to the
orientation of the molecule, and that the correct labeling
of those results is discussed below.

Unless otherwise specified, the calculations presented
below were performed using the FEM/DVR basis in
the velocity gauge with the parameters described in
Sec. III B, and make use of angular momenta up to l = 7
and R0 = 35 a0.
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e
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FIG. 7: Color online. TDCS for in-plane geometries with un-
equal energy sharing. Fixed electron (single ended arrows) at
90 degrees from the polarization with 20% of available energy.
Left column top to bottom: θmol = 0◦, 10◦, and 20◦. Right
column top to bottom: θmol = 30◦, 60◦, and 90◦.

V. THE COMPUTED CROSS SECTIONS FOR
DOUBLE PHOTOIONIZATION OF H2

The SDCS for double ionization by a 75 eV photon,
computed at the equilibrium internuclear distance of H2

is shown in the upper panel of Fig. 6, and corresponds
to an integrated cross section of 2.61 kb. Two features
of the SDCS at this energy are immediately apparent.
First, it is relatively flat in shape, as can be expected
for both atomic and molecular double photoionization at
these energies. Second, the contribution to Eq. (26) of the
final continuum of Πu symmetry is approximately 13.5
times larger than that of Σu symmetry at equal energy
sharing. That means that the perpendicular component,
dσ(Π)/dE1, in Eq. (26) is about 6.25 times larger than
that of the parallel component, dσ(Σ)/dE1, at that energy
sharing. The corresponding β parameter, defined as

β =
2
(

dσ(Σ)

dE1
− dσ(Π)

dE1

)

(

dσ(Σ)

dE1
+ 2dσ

(Π)

dE1

) , (46)
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FIG. 8: Color online. Same as in Fig. 7, except the fixed
electron has 50% of the available energy.

is plotted in the lower panel of Fig. 6. Its value at equal
energy sharing is -0.788 and varies by less than 1.5% over
the entire range of energy sharings. Our result is in good
agreement with the measured value of Gisselbrecht et

al. [4] who report β ≈ −0.75±0.1, while the earlier mea-
surements of Kossmann et al. [42] gave ≈ −0.68 ± 0.04.
The difference in the magnitudes of the perpendicular
and parallel contributions to the double photoionization
cross section is a fundamental difference between the case
of H2 and the isoelectronic atomic case of helium. As we
will see below, interference in the TDCS between the Σu
and Πu amplitudes for various molecular geometries is
an important cause of the differences between the atomic
and molecular cases.

In Figs. 7, 8, and 9 we show the TDCS for in-plane ge-
ometries in which one electron is fixed in a direction per-
pendicular to the polarization vector, while the molecule
is rotated in the same plane through 90◦. The three
figures show the cases in which the fixed electron carries
away 20, 50 and 80% of the available energy, respectively.
In the case of helium there would be a single TDCS cor-
responding to each six panel figure for H2. We see a
strong molecular effect in each case as the molecule is
rotated with respect to the polarization vector. Indeed,
these figures show the effect of nuclear attraction on the
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x 10
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e
1

FIG. 9: Color online. Same as in Fig. 7, except the fixed
electron has 80% of the available energy.

slower outgoing electron for a set of cases for which no
simple symmetry selection rules apply. Attraction to the
nuclei tends to orient some parts of the ejection pattern
along that axis, but this effect is strongly modified by
the forces of electron repulsion and the applied radiation
field.

In the atomic case, for equal energy sharing, the TDCS
consists of two lobes with an exact zero where the two
electrons both depart perpendicular to the polarization
vector. Except in the molecular geometries where one
lobe is so small as to be almost invisible, the TDCS for
H2 shows a two lobed structure reminiscent of the atomic
cross section, but strongly perturbed by the lower molec-
ular symmetry. The difference in the sizes of the parallel
and perpendicular components of the cross sections is ex-
plicitly demonstrated by the magnitudes of the TDCS in
the top left and bottom right panels of each figure, and
those two contributions interfere coherently to produce
the TDCS at all but the 0◦ and 90◦ geometries.

Out-of-plane cases show the interference between the
parallel and perpendicular components more clearly. In
Figs. 10, 11, and 12, we show a similar sequence of TDCS
plots, this time with the fixed electron coming out of the
plane towards the viewer. The three figures again show
20, 50, and 80% of the available energy respectively. In
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FIG. 10: Color online. TDCS for out-of-plane geometries
with unequal energy sharing. Fixed electron perpendicular
to the page with 20% of available energy. Left column top
to bottom: θmol = 0◦, 10◦, and 20◦. Right column top to
bottom: θmol = 30◦, 60◦, and 90◦.

all three figures we see the striking effect that the prin-
cipal axis of the TDCS, which is parallel to the polariza-
tion vector when the molecule and the polarization are
aligned, appears to rotate by 180◦ when the molecule is
rotated by only 90◦.

The reason for this apparent behavior is that as the
molecule is rotated away from the parallel configuration,
the Πu component, whose contribution to the TDCS is
largely perpendicular to the molecule, grows rapidly from
zero as the angle increases. When the molecule reaches
30◦ (top right panel in Figs. 10, 11, and 12) the Π com-
ponent already dominates and continues to rotate with
the molecule as the angle is increased.

Comparing the out-of-plane to in-plane geometries we
also note a considerably smaller difference between the
magnitudes of the purely parallel and purely perpendic-
ular geometries in which the molecule makes an angle of
0◦ and 90◦ to the polarization respectively.

A multitude of shapes in the TDCS is revealed when
the fixed electron and molecular axis are chosen at differ-
ent angles. Viewing them in three dimensions gives the
best general impression of the qualitative features of the
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FIG. 11: Color online. Same as in Fig. 10, except the fixed
electron has 50% of the available energy.

TDCS. For example, the out-of-plane cases in Figs. 10,
11, and 12 are given a new perspective by Fig. 13 which
shows an out-of-plane case with the molecule at 15◦ from
the polarization vector and reveals that they are each
slices through the face of a three dimensional TDCS that
is much larger behind the plane in which they are plotted.

To give a sense of the variety of the three dimensional
shapes of the TDCS that are characteristic of molecular
double photoionization in this case we plot the TDCS for
another geometry in Fig. 14. In this case the molecule
and fixed electron are both 20◦ from the polarization di-
rection. In contrast to the two lobes that would appear
in the angular distribution for atomic helium, the strong
interference between the Σ and Π contributions produces
a three lobed TDCS that cannot be explained by any sim-
ple model. We should note that this figure was plotted
incorrectly in ref. [18] and that a figure similar to Fig. 13
was presented with the molecule drawn at 15◦ on the op-
posite (wrong) side of the polarization, but that all the
other figures in that preliminary report were correct.
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FIG. 12: Color online. Same as in Fig. 10, except the fixed
electron has 80% of the available energy.

FIG. 13: Color online. 3D plot of TDCS for case of equal
energy sharing with fixed electron (red arrow) perpendicular
to polarization axis (green) with molecule making an angle of
15◦ with the polarization axis. Results shown were obtained
from B-spline calculations. Note that the molecular orienta-
tion was plotted incorrectly in ref. [18].

FIG. 14: Color online. 3D plot of TDCS with molecule (yel-
low) and fixed electron(red) at 20◦ from polarization vector
(green) and with fixed electron having 10% of the available
energy. Results shown were obtained from B-spline calcula-
tions. Note that this case was plotted incorrectly in ref. [18].

VI. COMPARISON WITH EXPERIMENTAL
MEASUREMENTS

A. Experimental resolutions

The momentum imaging experiments on this sys-
tem [1–4] all involve finite ranges of acceptance for the an-
gles of the fixed electron, plotted electron and molecule.
The TDCS plots of Section V demonstrate that the cross
section can change rapidly with those angles, and so to
make meaningful comparisons with experiment we must
integrate the calculated cross sections over the accep-
tance angles. Moreover, the experimental measurements
are reported with finite resolution for the energy sharing
between the two electrons, and we must also integrate
over that range of energy sharings in comparisons be-
tween theory and experiment. In all the cases we report
here the resolution for energy sharing was ±10%. How-
ever, the conventions for expressing angular resolutions
differ in the two current sets of experiments.

For the experiments of Weber et al. [1–3] a plane is de-
fined by the fixed electron (or the molecular axis in the
case of Fig. 21) and the direction of polarization. An-
gle ranges refer to in-plane and out-of-plane angles with
the analogy to a globe with the plane at the equator.
In-plane angles refer to rotation in the plane (longitude)
with all angles equally weighted. The out-of-plane angles
are weighted by a factor of sin(φ). For out-of-plane cases,
the acceptance range of the molecule in Fig. 17, or the
fixed electron in Fig. 21, is a conical range given by all
points on the sphere within a fixed angle of the perpen-
dicular to the plane. Typical acceptance ranges for these
experiments range from ±12◦ for the electrons to ±45◦

for the molecule. The exact values are given in ref. [3] as
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FIG. 15: Color online. Comparison with experiments of We-
ber (Fig. 5.69 of ref. [3]). The molecular axis is parallel to the
polarization direction (horizontal). The fixed electron (ar-
row), with 90% of the available energy is at (left to right in
each row) 0◦, 20◦, 55◦, and 90◦ to the polarization direction.
Current results are shown unaveraged (light solid curves) and
averaged over experimental acceptance angles (black solid
curves).

ε

FIG. 16: Color online. Comparison with experiments of We-
ber (Fig. 5.71 of ref. [3]). The molecular axis is perpendicular
to the polarization direction (horizontal). The fixed electron,
(arrow) with 90% of the available energy is at (left to right
in each row) 0◦, 20◦, 55◦, and 90◦ to the polarization di-
rection. Current results are shown unaveraged (light solid
curves) and averaged over experimental acceptance angles
(black solid curves).

cited in each figure below. Since the experimental results
of Weber et al. are reported in arbitrary units but are
internormalized within each panel set, we have chosen,
in each figure, a scaling factor that gives the best overall
fit to our averaged data.

For the experiments of Gisselbrecht et al. [4], the aver-

ε

FIG. 17: Color online. Comparison with experiments of We-
ber (Fig. 5.73 of ref. [3]). The molecular axis is perpendicular
to the polarization direction (horizontal) and perpendicular
to the plane of the page. The fixed electron (arrow), with
90% of the available energy is at (left to right in each row) 0◦,
20◦, 55◦, and 90◦ to the polarization direction. Current re-
sults are shown unaveraged (light solid curves) and averaged
over experimental acceptance angles (black solid curves).

aging was done over spherical polar angles defined with
the polarization direction as the z-axis and a plane defin-
ing the zero of the azimuthal angles. In the coplanar case
of Fig. 18, this plane is defined by the polarization and
the fixed electron directions. In Fig. 19 the plane is now
defined by the polarization and the plotted electron since
the fixed electron is parallel to the polarization direction.
In Fig. 20, the plane is defined to be the one perpendic-
ular to the plane containing the polarization vector and
the fixed electron, but containing the polarization vector.
In all cases averaging over the acceptance angles was per-
formed for each quantity (electron or molecule) according
to

σave =

∫ φ2

φ1

∫ θ2
θ1
σ(θ, φ) sin(θ)dθ dφ

∫ φ2

φ1

∫ θ2
θ1

sin(θ)dθ dφ
. (47)

For these experiments the exact ranges of acceptance are
given in ref. [4], and typically are about ±20◦ for the
electrons and ±20◦ to ±45◦ for the molecule. The results
of Gisselbrecht et al. were reported in absolute units, but
their cross sections are differential in both E1 and E2

and therefore effectively differential in KER. Since our
cross sections were computed for a single internuclear
distance, we chose a single scaling factor in all cases for
comparing our averaged results with their experiments in
Figs. 18, 19, and 20.
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B. Comparison with measured cross sections

We begin by comparing the calculated TDCS for some
in-plane cases, both as calculated for the central geom-
etry and energy sharing, and also averaged over the ex-
perimental resolutions as described above, with the mea-
surements of the relative cross sections of Weber [3] and
absolute measurements of [4].

Figure 15 shows an unequal energy sharing case which,
were it not for the finite acceptance angles, would be a
case with only Σu contributions. However averaging over
acceptance angles incorporates a large contribution of the
Πu component which interferes with the Σu component
to change both the magnitude and shape of the TDCS
radically. The resulting agreement with the four internor-
malized measurements shown in Fig. 15 is dramatically
improved, revealing how the finite resolution of the ex-
periment obscures completely the Σu contribution to the
angular dependence of the double photoionization pro-
cess.

Figures 16 and 17 show two cases of experiments in
the geometry that would have only Πu contributions, but
that are also modified by averaging over acceptance an-
gles and energy resolution. Both figures are for unequal
energy sharing with the fixed electron having 90% of the
available energy. Here the changes in magnitude upon av-
eraging over the experimental resolution are not as great
as in Fig. 15 because the Π contribution dominates at
most geometries. The changes in shape are also more
modest, but the averaged results agree quite well with
the experimental measurements except for some details.
Note that while the panels of each of these figures are
internormalized, the error bars are quite different in each
case.

We can detect an interesting molecular effect by com-
paring the upper left panels of Figs. 16 and 17, where the
polarization direction and the fixed-electron form a com-
mon axis about which there would be cylindrical symme-
try in the case of helium. In the molecular case, however,
the cylindrical geometry of the atomic case becomes flat-
tened along the direction of the molecular axis (Fig. 16).
While the effect is most clearly seen when comparing the
unaveraged results, it is also evident in the averaged re-
sults, as well as in the experimental measurements.

Turning to the recent experiments of Gisselbrecht et

al. [4], Fig. 18 shows a comparison of the averaged and
unaveraged calculated TDCS for an in-plane case with
equal energy sharing. These measurements are absolute
and have somewhat better statistics than those of ref-
erences [1, 2], and [3]. In this figure the fixed electron
is perpendicular to the polarization direction, while the
molecule is rotated from perpendicular to parallel to the
polarization. One sees how the averaged theoretical re-
sults agree both quantitatively and qualitatively with all
but the smallest TDCS shown here.

In Fig. 19 we show another comparison with the mea-
surements of [4], this time in an in-plane geometry with
the fixed electron being ejected parallel to the direction
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FIG. 18: Color online. Comparison of averaged (black solid
curves) and unaveraged (light solid curves) theoretical results
with experimental data from [4] (points) for in-plane geome-
tries with fixed electron (arrow) perpendicular to polarization
and equal energy sharing. Molecule is at (top to bottom in
each column) 90◦, 30◦, 60◦, and 0◦ from polarization direc-
tion. The acceptance angles are those from Fig. 1 of the
reference. Radii of the circles, marked to the right, give the
magnitude of the cross section in units of (millibarns eV−2

sr−3) as given in ref. [4].
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FIG. 19: Color online. As is Fig. 18, with fixed electron
(arrow) parallel to polarization. The acceptance angles are
those from Fig. 2 of the reference.

of polarization. In this case the averaging is necessary to
reproduce the correct shape, especially in the case where
the molecule is ostensibly parallel to the polarization di-
rection, but the quantitative agreement is poorer than
that of Fig. 18. We note, however, that if we were to
divide our results in Fig. 19 by a factor of two, then the
agreement with experiment would be very good. We have
not done so, however, since the measurements of [4] were
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FIG. 20: Color online. As is Fig. 18, for out-of-plane ge-
ometries. The acceptance angles are those from Fig. 3 of the
reference.

reported as absolute.
A comparison with out-of-plane measurements from

the same experiment with one electron ejected towards
the observer, and with the molecule either parallel or
perpendicular to the direction of polarization is shown in
Fig. 20. In this case averaging over acceptance angles is
again most important for the geometry that samples an-
gles in geometries where the molecule is near parallel to
the direction of polarization. However in that geometry
the agreement with experiment is poorest.

A similar out-of-plane case from the experiments of
Weber et al. [1, 3] is shown in Fig. 21, this time with
the molecule oriented at angles of 35◦, 55◦ and 90◦ This
is a case close to that explored in Fig. 11 showing the
apparent rotation of the cross section by 180◦ while the
molecule rotates by 90◦. A sign error in the presentation
of the polar plots originally reported [1, 3] was recently
discovered and corrected by Weber [43]. In this case the
theoretical TDCS, averaged over the acceptance angles
of the experiment, are in excellent agreement with the
corrected experimental data, beautifully displaying detail
of how the cross section rotates with the molecule.

ε
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FIG. 21: Color online. Comparison with experiments of We-
ber et al. [1], as recently corrected by Weber [43]. The fixed
electron, with 50% of the available energy, is perpendicular,
coming out of the page, while the molecule is oriented in the
plane at (top to bottom) 35◦, 55◦, and 90◦ to the polariza-
tion direction (horizontal). Theoretical results are shown un-
averaged (light solid curves) and averaged over experimental
acceptance angles (black solid curves).

VII. CONCLUSIONS

We have demonstrated the convergence of fixed-nuclei
calculations of the cross sections for double photoioniza-
tion of H2 by a 75 eV photon, and provided a consis-
tency check between two different numerical approaches
to these calculations. Clear molecular effects are visible
in the calculated TDCS and a range of sensitively vary-
ing shapes for these cross sections emerge when different
geometries of photoejection are explored. Some of those
shapes result from the interference of the parallel and
perpendicular components of the double ionization am-
plitude, which have substantially different magnitudes.

The comparison with two sets of experiments reveal
the necessity of averaging these calculations over experi-
mental angular and energy resolutions. While agreement
is generally acceptable, some discrepancies between ex-
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periment and theory for the TDCS remain. We also find
that the angular resolutions inherent in the current gen-
eration of experiments obscure details of the TDCS that
are clear signatures of molecular effects in the double
photoionization process. Further work will be required
to resolve the remaining discrepancies between converged
theory and experiment and to verify the effects that are
currently beyond experimental resolution.

In a subsequent publication we will explore the vari-
ation of these cross sections with internuclear distance,
first observed by Weber et al. [2]. Measurements have
been performed for various ranges of kinetic energy re-
lease into the nuclear motion that map onto particular
ranges of internuclear distance sampled by the ground
state vibrational wave function. This intrinsically molec-
ular effect and the degree to which it is sensitive to molec-
ular electronic correlation will be targets of those calcu-
lations. In that study we will explore the consequences of
accurately performing the integral of the amplitude over
internuclear distance in Eq. (31) in lieu of making use of
the delta function approximation to that integral.

APPENDIX A: RELATION BETWEEN DIRECT
AND EXCHANGE AMPLITUDES

For the calculations using B-splines, an explic-
itly antisymmetrized wave function was used, as ex-
pressed in Eq. (19). The resulting direct amplitude
F dir
l1,l2,j1,µ1,j2,µ2

(k1, k2) is defined in (22), and the corre-
sponding exchange integral is defined as

F exch
l1,l2,j1,µ1,j2,µ2

(k1, k2) =
ρ0

2

∫ π/2

0

dα

(

φ
(c)
l1,k1

(r1)

k1
δl1,j2 +Rl1µ2

j2
(r1)

)

(

φ
(c)
l2,k2

(r2)

k2
δl2,j1 +Rl2µ1

j1
(r2)

)

[←−
∂

∂ρ
−
−→
∂

∂ρ

]

ρ=ρ0

ψexch
j1µ1,j2µ2

(r1, r2) .

(A1)

In practice it is unnecessary to calculate this integral sep-
arately, because we can make use of symmetry properties
to relate this exchange amplitude to a direct amplitude.

If we replace ψexch
j1µ1,j2µ2

(r1, r2) with ψdir
j1µ1,j2µ2

(r2, r1)
and then relabel the electronic coordinates by exchanging

r1 and r2, we find

F exch
l1,l2,j1,µ1,j2,µ2

(k1, k2) =
ρ0

2

∫ π/2

0

dα

(

φ
(c)
l1,k1

(r2)

k1
δl1,j2 +Rl1µ2

j2
(r2)

)

(

φ
(c)
l2,k2

(r1)

k2
δl2,j1 +Rl2µ1

j1
(r1)

)

[←−
∂

∂ρ
−
−→
∂

∂ρ

]

ρ=ρ0

ψdir
j1µ1,j2µ2

(r1, r2) ,

(A2)

which is equal to F dir
l2,l1,j1,µ1,j2,µ2

(k2, k1). So we have a
relationship between particular direct and exchange am-
plitudes,

F exch
l1,l2,j1,µ1,j2,µ2

(k1, k2) = F dir
l2,l1,j1,µ1,j2,µ2

(k2, k1) . (A3)

Similar relations can be found for the reduced amplitudes

F
dir,exch (M)
l1,l2,µ1,µ2

(k1, k2).
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