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     The ability to fabricate membranes with arrays of apertures only a few

nanometers in diameter are important to many fields of research, including ion

beam lithography1, DNA sequencing2, single ion implantations3, and single molecule

studies. Because even the state-of-the-art lithography tools are limited in their

ability to produce nanoscale features, alternative methods of fabricating single pores

of nanometer scale have been developed, using ion-beam sculpting2 and focused-ion-

beam assisted deposition4. However, these methods cannot simultaneously produce

multiple holes of nanometer dimension. Here we report a means of forming arrays

of nanopores simultaneously on a thin, solid-state membrane using plasma-based

thin-film deposition. By depositing layers of metallic thin films, the aperture sizes of

pores in a pre-fabricated membrane can be reduced from a couple of micrometers

down to tens of nanometers and even smaller. The technique offers a way to reduce

the sizes of aperture of any shape in a variety of substrate materials, both

conducting and insulating. Such arrays of nanopores can serve as membrane

channels for DNA sequencing, as masks in ion-beam imprinters, for the fabrication

of quantum dots, and in other applications.



Currently methods of producing nanoscale pores in membranes have important

limitations. One method of fabricating holes with dimension of tens of nanometers is to

use electron-beam lithography, followed by reactive-ion etching. But achieving smaller

feature sizes is difficult, and because the process includes resist exposure and etching it is

slow. Holes directly milled by focused ion beam (FIB) are limited in dimension to the

beam diameter, which is about 10 nm, and arrays of apertures must be drilled one

aperture at a time. Molecular-scale nanopores in silicon nitride (Si3N4) films have been

reported using the technique of ion-beam scuplting2: apertures with an initial diameter of

100 nm were fabricated in a free-standing Si3N4 membrane supported on a silicon frame.

Irradiating the holes with a 3-keV argon ion (Ar+) beam caused them to close rather than

open up, resulting in nanopores 2 to 3 nm in diameter, as controlled by a feedback

monitoring circuit. However, this technique can only be applied to insulating membrane,

such as Si3N4 and silicon dioxide (SiO2), and multiple simultaneous nanopores have not

been reported using ion-beam sculpting. Another method of fabricating nanopores is to

use a dual beam system employing an FIB and a scanning electron microscope (SEM)4.

Apertures ranging from 50 nm to 600 nm in diameter are premachined using an FIB,

followed by gas-assisted deposition using an FIB/SEM dual beam. Depositing a film of

metal like platinum around the edges of the aperture makes them smaller and smaller.

Like the ion-beam sculpting technique, forming multiple nanopore arrays with FIB/SEM

is very slow.

In this letter, we describe a simple method of forming nanopore arrays by simultaneously

shrinking apertures of micrometer dimensions using plasma-based thin-film deposition.

As shown in Figure 1, a metallic thin film such as copper or nickel is deposited on a

substrate placed in a plasma. Over time, the size of an aperture in the substrate gradually



shrinks due to the buildi-up material deposited on the surface and sidewalls. By carefully

controlling deposition time, nanopores of any size can be obtained. In the case of copper,

plasma is generated by a radiofrequency-driven multicusp source with a copper antenna;

argon is introduced into the source chamber to generate the plasma. Neutral copper atoms

are first sputtered from the antenna by the background Ar+ ions. These atoms are

subsequently ionized by the plasma electrons.5-6 Copper thin films steadily grow on the

substrate placed in the plasma. The growth rate can be adjusted by varying the plasma

operation condition. A deposition rate as high as 130 nm/min has been achieved.

The plasma-based thin-film deposition technique has two significant advantages. First,

there is no restriction on the material that can be used for membranes. The presence of a

plasma eliminates any charging problem, allowing uniform thin-film coating on either

conducting or insulating samples. In the experiment reported here, a membrane was

prepared as a pattern generator for an ion-projection lithography system.7 Starting with a

bare 4”-diameter silicon wafer, boron dopants were diffused into the front side of the

substrate from a solid source at 1100 0C for 7 hours. By this means a boron concentration

higher than 1020 cm-3 can be obtained in the top 5-_m layer of silicon; this silicon layer

heavily doped with boron was used as an etch stop in a later wet-etch step employing

potassium hydroxide (KOH). After boron diffusion, 30 mins of wet oxidation was

performed at 850 0C, followed by 150-nm-thick low stress nitride (LSN) deposition on

both sides of the wafer. LSN was used as a mask during KOH wet etching in order to

pattern 1-mm2 windows on the backside of the wafer. After the KOH etch, a silicon

membrane approximately 4 _m thick remained. A focused gallium ion (Ga+) beam was

then used to drill apertures of different dimensions in the membrane.



A second advantage of this technique is that there is no restriction on the initial

dimension of the premachined apertures. Starting with a silicon membrane with an array

of 5-µm-diameter apertures, as shown in Figure 2 (A), the apertures become smaller after

nickel deposition for 30 min (Figure 2B). The shrinkage of the multiple apertures was

achieved by depositing thin films on the substrate surface and sidewalls. The SEM

micrographs in Figure 2(B) and 2(C) show that the diameter of each hole was uniformly

reduced to approximately 2 µm. The picture of the back of the hole in Figure 2(D)

indicates that the shrunken apertures are cone-shaped; with conformal plasma deposition,

apertures with straight sidewalls can be obtained. By controlling deposition time, aperture

sizes of tens of nanometers have been achieved from initial hole sizes of several

micrometers. Figure 3 shows a series of apertures before and after copper deposition.

After 2.5 hours of coating, the diameter of a circular hole was reduced from 1.7 µm (Fig.

3A) to approximately 1 µm (Fig. 3B). Varying the plasma conditions results in different

thin-film growth rate; by this means the diameters of the holes shown were reduced from

1 µm (Fig. 3C) to 750 nm (Fig. 3D) and from 630 nm (Fig. 3E) to 200 nm (Fig. 3F),

respectively.

There is no limit to how small the aperture will shrink before it is fully closed up.  By

depositing layer after layer of copper film the size of an aperture continues to shrink, as

shown in Figure 4. During subsequent copper depositions, the width of a nanoscale slit

was continually reduced, from 250 nm (Fig. 4A), to 190 nm (Fig. 4B), to 75 nm (Fig.

4C), to 55 nm (Fig. 4D).  Finally, after approximately four hours of copper ion

deposition, the size of the aperture was reduced to approximately 20 nm. Presently the

dimension of nanopores is gauged only by the deposition time. Accurate control of the



final aperture size can be achieved by monitoring the ion current that passes through the

aperture.

This method is useful for fabricating a variety of nano-structures. Similar shrinkage was

observed for several different geometries besides round holes, including rectangular slits.

The oval feature shown in Figure 4A maintained the same oval shape after the shrinkage,

as illustrated in Fig. 4D.

Formation of nanopore arrays using plasma-based thin-film deposition offers a promising

new approach for achieving feature sizes of nanometer scale with high throughput. The

technique will find many applications, including fabrication of masks for ion-beam

imprinter, implantation of quantum dots and wires, and the production of multiple

channels for DNA sequencing.

Acknowledgments

The work is supported by the Defense Advanced Research Projects Agency (DARPA)

and the U.S. Department of Energy under contract No. DE-AC03-76SF0098. Support

from staff members of the Plasma and Ion Source Technology Group in Lawrence

Berkeley National Laboratory is also gratefully acknowledged.

References:

[1] Jiang, X., Ji, Q., Ji, J., Chang, A., Leung, K.-N. Resolution improvement for a

maskless microion beam reduction lithography system. J. Vac. Sci. Technol. B21, 2724-

2727(2003).

[2] Li, J., Stein, D. McMullan, C., Branton D., Aziz, M. J., Golovchenko, J. A. Ion-beam

sculpting at nanometer length scales. Nature, 412, 166-169(2001).



[3] Schenkel, T., Persaud, A., Park, S. J., Meijer, J., Kinglsey, J. R., McDonald, J. W.,

Holder, J. P., Bokor, J. Schneider, D. H. Single Ion Implantation for Solid State Quantum

Computer Development. J. Vac. Sci. Technol. B20, 2816-2823(2002).  

[4] Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., Persaud, A. Formation of a few

nanometer wide holes in membranes with a dual beam focused ion beam system. J. Vac.

Sci. Technol. B21, 2720-2723(2003).

[5] Leung, K.-N., Bachman, D. A., Herz, P. R., McDonald, D. S. Rf driven multicusp ion

source for pulsed or steady-state ion beam production. Nucl. Instrum. Methods. B74, 291-

294 (1993).

[6] Ji. L., Ji, Q., Chen, Y., Jiang, X., Leung, K.-N. Thin film deposition and patterning for

magnetic storage media. Submitted to the 49th International Conference on Electron, Ion,

and Photon beam Technology & Nanofabrication, 2005.

[7] Jiang, X., Leung, K.-N. Development of the pattern generator for the Maskless Micro-

beam Reduction Lithography Systems. Submitted to the 49th International Conference on

Electron, Ion, and Photon beam Technology & Nanofabrication, 2005.



Figure Captions:

Figure 1: Schematic diagram of forming nanopores using plasma-based thin-film

deposition. The aperture size gradually shrinks due to the copper deposited on the surface

and sidewalls.

Figure 2: (A) Premachined silicon membrane with an array of 5-µm-diameter

apertures. (B) After nickel deposition for 30 min, the diameter of each hole was

uniformly reduced to approximately 2 µm. (C) Front of the aperture. (D) Back of the

aperture.

Figure 3: A series of apertures before and after copper deposition. Aperture I: (A)

before and (B) after the deposition.  Aperture II: (C) before and (D) after the deposition.

Aperture III: (E) before and (F) after the deposition.

Figure 4: SEM micrographs of an aperture after each subsequent copper depositions.

The size of the aperture continues to reduce from (A) 250 nm, to (B) 190 nm, then to (C)

75 nm, and finally (D) reaches 55 nm.
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