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1 Abstract

We perform a comparative study for the harmonic versus arithmetic averag-
ing of the heat conduction coefficient when solving non-linear heat transfer
problems. In literature, the harmonic average is the method of choice, be-
cause it is widely believed that the harmonic average is more accurate model.
However, our analysis reveals that this is not necessarily true. For instance,
we show a case in which the harmonic average is less accurate when a coarser
mesh is used. More importantly, we demonstrated that if the boundary layers
are finely resolved, then the harmonic and arithmetic averaging techniques
are identical in the truncation error sense. Our analysis further reveals that
the accuracy of these two techniques depends on how the physical problem
is modeled.
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2 Introduction

In this paper, we study how the choice of averaging of the heat conduction
coefficient affects the solutions of non-linear heat conduction problems. In
literature, the harmonic average is widely used by the heat transfer commu-
nity. The harmonic average was promoted by Patankar [7]. It is designed to
solve heat transfer problems involving multiple material properties. Patankar
[7] concluded that the harmonic average is more accurate in his case studies.
Since then, the harmonic average became people’s choice when dealing with
non-linear heat conduction problems. To our knowledge, the harmonic aver-
age is always assumed to be more accurate model regardless of the problem
types, therefore no comparative study has been performed on this matter.

In this paper, we compare the harmonic average model with the arithmetic
average model. We provide in-depth mathematical analysis and numerical
computations. Our analysis and numerical results reveal that both models
are identical for a very fine mesh. However, for coarser grids, in some cases
the harmonic average is better, in others the arithmetic average is better.
For instance, in a single material test case, the harmonic average for coarser
grids performs very poorly to predict the thermal wave front location. On
the other hand, the harmonic average (again for coarser grids) is found to be
more accurate when dealing with multi-material test cases. In Section 4, we
provide a detail mathematical analysis about the accuracy of the two models.
Our analysis shows that the averaging techniques and the model problems
are tightly related. In other words, the model problem and the choice of
averaging will directly affect the accuracy. Therefore, one should always be
aware of the suitability of the averaging technique to the model problem
he/she is dealing with. A different way of stating this is that the averaging
technique is a sub-grid physics model. The sub-grid physics models are based
on different assumptions. If these assumptions are matched in solving the
problem, then the model will be more accurate.

The organization of the present paper is as follows. In Section 3, we describe
the partial differential equations of our model. In Section 4, we describe the
numerical algorithm employed and provide several mathematical derivations
and analysis. In Section 5, we present numerical results involving single and
multi-material test cases. Finally, Section 6 contains concluding remarks.
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3 Model equation

We consider the following model equation,

∂T

∂t
+

∂

∂x
(D

∂T

∂x
) = 0, (1)

representing a non-linear heat conduction problem. Where D is the non-
linear heat conduction coefficient. In our particular case, we define D as
D = T a. Here the constant a determines the strength of the non-linearity.
(Note that setting a = 0 turns (1) into the linear diffusion equation). The
variation in the heat conduction coefficient creates a fast moving wave front.
This phenomena is also known as the Marshak wave ([5],[3]).

4 Numerical Algorithm

Our numerical algorithm is second order in both space and time, i.e, it is
based on the Crank-Nicolson scheme [9]. Our space discretization is done
conservatively based on a second order finite volume technique ([4],[10]).
Our time integration is based on the Jacobien-Free Newton Krylov method
[2].

The time and space discretization of Eqn. (1) can be written as:

T n+1
i − T n

i

Δt
+

Dn+1
i+1/2(Tx)

n+1
i+1/2 − Dn+1

i−1/2(Tx)
n+1
i−1/2

Δx
= 0 (2)

where

(Tx)
n+1
i+1/2 =

T n+1
i+1 − T n+1

i

Δx
. (3)

The conductivity terms Di+1/2 and Di−1/2 are computed according to the
harmonic or arithmetic averaging models.

4.1 The Harmonic Average Model

In this section, we show the derivation of the harmonic averaging of the heat
conduction coefficient. Our derivation is based on two assumptions:

5



Cell edgesCell center

Di+1Di+1/2Di

Discontinuity at the cell edge

Half control volume

Figure 1: Conductivity representation for the harmonic average.

1) We assume the heat conduction coefficient is piecewise constant and con-
tinuous from cell edge to cell edge(refer to Figure 1). 2) We consider steady-
state solutions.

We know that the flux-in is equal to the flux-out at the (i + 1/2) face. From
our first assumption, we also know that the conductivity terms (e.g., D’s)
are equal from the cell center (i + 1) to the cell edge (i + 1/2), and from the
cell edge (i + 1/2) to the (i)th cell (refer to Figure 1). Then we can write

Di+1

Ti+1 − Ti+1/2

Δx/2
= Di

Ti+1/2 − Ti

Δx/2
. (4)

Solving Eqn. (4) for Ti+1/2, we get

Ti+1/2 =
Di+1Ti+1 + DiTi

Di+1 + Di
. (5)

Now, we consider the following conservative discretizations;

T n+1
i+1/4 − T n

i+1/4

Δt
− Di+1/2Tx,i+1/2 − DiTx,i

Δx/2
= 0, (6)

T n+1
i+1/2 − T n

i+1/2

Δt
− Di+1Tx,i+1 − DiTx,i

Δx
= 0. (7)

Here, Eqn. (6) corresponds to the conservation law when considering the left
half part region between the (i)th and (i+1)th cells as the control volume(e.g.,
Figure 1). Eqn. (7) corresponds to the conservation law when considering
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the whole region between the (i)th and (i + 1)th cells as the control volume.
At the steady state, the time part of Eqn. (6) and Eqn. (7) vanishes. Then,
we can write

DiTx,i = Di+1Tx,i+1 = Di+1/2Tx,i+1/2. (8)

Now, considering the discretization of Eqn (8) in half and whole control
volumes using forward differencing, we have

Di+1
Ti+1 − Ti

Δx
= Di+1/2

Ti+1/2 − Ti

Δx/2
. (9)

Using this result and assumption 1), we arrive at

Di+1/2
Ti+1 − Ti

Δx
= Di

Ti+1/2 − Ti

Δx/2
. (10)

Substituting Eqn. (5) in Eqn.(10) and performing the necessary algebra we
obtain

Di+1/2 =
2DiDi+1

Di + Di+1

. (11)

Eqn. (11) is called the harmonic average of the conductivity term at the
(i + 1/2)th face.

4.2 The Arithmetic Average Model

The arithmetic average is derived based on the assumption that the con-
ductivity term is piecewise constant and continuous from cell center to cell
center (refer to Figure 2). This assumption and knowing that the flux-in is
equal to the flux-out at the (i + 1/2) face give

Di+1/2

Ti+1 − Ti+1/2

Δx/2
= Di+1/2

Ti+1/2 − Ti

Δx/2
. (12)

Solving Eqn. (12) for Ti+1/2, we get

Ti+1/2 =
Ti+1 + Ti

2
. (13)
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Figure 2: Conductivity representation for the arithmetic average.

Now, making use of the steady state assumption and considering fluxes in
the left/right half and the whole control volumes (as we did in the harmonic
case), we have

Di+1
Ti+1 − Ti

Δx
= Di+1/2

Ti+1 − Ti+1/2

Δx/2
, (14)

Di
Ti+1 − Ti

Δx
= Di+1/2

Ti+1/2 − Ti

Δx/2
. (15)

Adding Eqn. (14) and (15) from each side, we obtain

Di+1/2 =
Di + Di+1

2
. (16)

Eqn. (16) is called the arithmetic average of the conductivity term at the
(i + 1/2)th face.

Remark-1: We remark that the assumptions we made in Sections 4.1 and
4.2 are rather severe. For instance the constant conductivity term assumption
would make sense for very fine grids. Furthermore, both models are derived
at the steady state. Therefore, during the transient, we should expect more
errors associated with the model itself. We observed these behaviors in our
numerical results. For instance, in the single-material test case (Section 5.1),
the harmonic model has more uncertainties for coarser grids leading more in-
accuracies. On the other hand, in the multi-material test case, although the
harmonic average is designed for this type of problem, during the transient,
we don’t see significant advantages. However, at the steady state the har-
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monic average is many order of magnitude better since all of the assumptions
we have made are matched (refer to Section 5.2).

Remark-2: Suppose, we have an insulator in the system, i.e, assume the
i + 1/2th face corresponds to the boundary between the conductive material
on the left and the insulator on the right. Then, Di+1 → 0 in Eqn. (11),
leading Di+1/2 → 0. This means zero heat flux at the i + 1/2th face as
it should. However, Eqn. (16) gives none-zero heat flux as Di+1 → 0.
Therefore, the harmonic average is the better choice (of course, one can
simply set the flux to zero at the insulator as a boundary condition), if we
are interested in complete insulation.

Remark-3: In a radiation diffusion problem, if Ti > Ti+1, then Di >> Di+1,
since typically D(T ) = T 3. With these, the harmonic average will favor the
lowest conduction coefficient, then this will artificially damp the radiation
and not allow it to flow into cold zones [6]. So in this case, the harmonic
average is not the way to go. The arithmetic average or weighted arithmetic
and geometric averages are suggested in [6]. Using the combination of the
averaging techniques is suggested in some other type of applications, e.g,
shape optimization [1].

4.3 Truncation error analysis

In this section, we perform a truncation error analysis (refer to [9],[8]) for the
two averaging techniques. The purpose of this analysis is to have a mathe-
matical understanding about the errors committed by the two methods.

For the time being, we freeze the time discretization part of the PDE(i.e, our
interest is the spatial error committed by the two models.). Then the PDE
becomes

∂

∂x
(D

∂T

∂x
) = 0. (17)

Discrete form of this equation can be written as;

1

Δx2
[Di+1/2(Ti+1 − Ti) − Di−1/2(Ti − Ti−1)] = 0. (18)

The harmonic average:

9



The harmonic average considers continuous fluxes across the cell centers (Fig-
ure 1), thus we perform Taylor series expansions centered at cell centers. We
consider the following Taylor series expansions;

Ti+1 = Ti + ΔxTx,i +
Δx2

2
Txx,i +

Δx3

6
Txxx,i +

Δx4

24
Txxxx,i (19)

Ti−1 = Ti − ΔxTx,i +
Δx2

2
Txx,i − Δx3

6
Txxx,i +

Δx4

24
Txxxx,i (20)

Di+1/2 = Di +
Δx

2
Dx,i +

Δx2

8
Dxx,i +

Δx3

48
Dxxx,i +

Δx4

384
Dxxxx,i (21)

Di−1/2 = Di − Δx

2
Dx,i +

Δx2

8
Dxx,i − Δx3

48
Dxxx,i +

Δx4

384
Dxxxx,i. (22)

Substituting these series expansions into Eqn. (18) ,canceling the common
terms with opposite signs, and making use of Eqn. (17), we obtain

τi =
Δx2

24
[Dx,iTxxx,i + DiTxxxx,i] + O(Δx4). (23)

This is the truncation error for the harmonic average.

The arithmetic average:

The arithmetic average considers continuous fluxes across the cell edges (Fig-
ure 2), thus we expand Taylor series centered at cell edges. We consider the
following Taylor series expansions where we linearize at cell edges i + 1/2
and i − 1/2;

Ti = Ti+1/2 − Δx

2
Tx,i+1/2 +

Δx2

8
Txx,i+1/2 − Δx3

48
Txxx,i+1/2

+
Δx4

384
Txxxx,i+1/2 − Δx5

3840
Txxxxx,i+1/2 (24)

Ti+1 = Ti+1/2 +
Δx

2
Tx,i+1/2 +

Δx2

8
Txx,i+1/2 +

Δx3

48
Txxx,i+1/2

+
Δx4

384
Txxxx,i+1/2 +

Δx5

3840
Txxxxx,i+1/2 (25)
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Ti = Ti−1/2 +
Δx

2
Tx,i−1/2 +

Δx2

8
Txx,i−1/2 +

Δx3

48
Txxx,i−1/2

+
Δx4

384
Txxxx,i−1/2 +

Δx5

3840
Txxxxx,i−1/2 (26)

Ti−1 = Ti−1/2 − Δx

2
Tx,i−1/2 +

Δx2

8
Txx,i−1/2 − Δx3

48
Txxx,i−1/2

+
Δx4

384
Txxxx,i−1/2 − Δx5

3840
Txxxxx,i−1/2 (27)

Substituting these series expansions into Eqn. (18) , again canceling the
common terms with opposite signs, and making use of Eqn. (17), we obtain

τi =
Δx2

24

(Di+1/2Txxx,i+1/2 − Di−1/2Txxx,i−1/2)

Δx
+ O(Δx4). (28)

This is the truncation error for the arithmetic average. Notice that when
Δx → 0 this expression (Eqn. (28)) is equivalent to

τi =
Δx2

24
[(DTxxx)x,i] + O(Δx4), (29)

or

τi =
Δx2

24
[Dx,iTxxx,i + DiTxxxx,i] + O(Δx4), (30)

which is identical to the truncation error for the harmonic average.

Note: This analysis clearly shows that when the mesh resolution is fine
enough, the two procedures are identical. This finding will be verified nu-
merically in the following section.

5 Numerical results

5.1 Moving-front Single-material test

We solve Eqn. (1) in [0, 1] with T (0, t) = 2.0, T (1, t) = 0.1, and T (x, 0) =
0.1. With these settings, the nonlinear conductivity term creates a moving
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wave front. The front locations are shown in Figures 3,5, and 8 for different
conductivity models and non-linearity.

Figures 3,5, and 8 show solutions at time = 0.08 with different mesh resolu-
tions for a = 3, 2 and 1 respectively. As we can see from these figures, the
harmonic average is very inaccurate for predicting the front location when
a coarser mesh is used especially with larger a’s. Figures 4,6, and 9 show
the errors committed by the two methods again for a = 3, 2, 1. The errors
are calculated based on the comparison of the computed solution to a refer-
ence solution (i.e, a reference solution for a = 3 is generated with 3200 grid
points). Figures 4,6, and 9 indicate second order convergence (in space) with
the mesh refinements. Clearly, the harmonic average commits more error
for coarser grids. On the other hand, for a very fine mesh the errors from
the two methods are in the same order. This can be seen in Figure 7. This
conclusion is also consistent with our truncation error analysis.

Another key observation from the error plots (Figures 4,6, and 9) is that the
increase in nonlinearity(i.e, a = 1, 2, 3) means more error in both methods
for the same amount of grid points. This behavior can also be verified by
considering our truncation error analysis. For instance, we can see this by
considering the truncation terms, i.e, for the harmonic average for a = 1, 2, 3;

τa=1
i =

Δx2

24
[Txxx,i − TTxxxx,i] + O(Δx4), (31)

τa=2
i =

Δx2

24
[2TTxxx,i − T 2Txxxx,i] + O(Δx4), (32)

and

τa=3
i =

Δx2

24
[3T 2Txxx,i − T 3Txxxx,i] + O(Δx4), (33)

where D = T a and Dx = aT a−1 with a = 1, 2, 3. Then we obtain τa=2 =
Tτa=1 + O(Δx2) and τa=3 = T 2τa=1 + O(Δx2).

We derive two conclusions from this test case. One is that the harmonic
average is not better than the arithmetic average in contradiction to the
common belief in literature. Second, both methods are convergent and com-
parable with finer grids.

We also make the following observation regarding validation and uncertainty
quantification. Both harmonic and arithmetic averaging have been shown to
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be second order accurate in space (Eqns. (23) and (28)). However, if the
validation or uncertainty quantification are done at coarse grids, then the
conclusions about uncertainty and accuracy would be very different. There-
fore it is important to have a converged solution before the validation or
uncertainty quantification is performed.

5.2 Stationary-interface Multi-material test

In this test, we solve the same PDE (e.g, Eqn. (1)), but we use constant
in time (discontinuous in space, e.g, the discontinuity is located at the cell
edge) heat conduction coefficient, i.e,

D(x, t) =

{
1000 if x ≤ 0.5
1 if x > 0.5

(34)

We solve this problem in the same domain and with the same boundary
conditions as in the single-material test case.

The discontinuity in the conductivity term represents a heat flow from a high-
conductive material to a low-conductive material. We implemented both
averaging techniques on this problem. We remark that a similar problem is
studied by Patankar [7] based on which it was suggested that the harmonic
average is more accurate. Our results also favor the harmonic average for
this test when coarser grids are used. Nonetheless, with a fine-enough mesh,
both methods are comparable.

Figure 10 shows the time history of the solution up to the steady state. The
temperature builds up quickly in the high conductivity region(i.e, x ≤ 0.5),
then slowly diffuses to the low conductive material. Figure 10 is produced
using 800 mesh points. We see that both methods give almost identical
solutions. However the arithmetic average is slightly worse for coarser grids
(i.e, Figure 11 with 20 points). This can be seen more clearly from Figure
12 which compares the errors committed by the two methods at different
times. Notice that the error (especially for the arithmetic average) is higher
at the front where the conductivity term changes dramatically. Also, Figure
12 shows that errors for both methods first grow in time during the transient,
and then decrease as the solution approaches steady state. This is because
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we have both temporal and spatial errors added during the transient, yet the
temporal errors disappear at the steady state.

Figure 13 shows the log plots of the errors at different times. We observe
from Figure 13 that during the transient the errors from both methods are
within an order of magnitude of each other. However, when the steady state
is reached and we have a diffusion coefficient that is constant from cell edge
to cell edge, both assumptions of the harmonic average sub-grid model are
met. In this case, the harmonic average is many magnitudes more accurate
than the arithmetic average.

Figure 14 shows convergence analysis. Clearly both methods are second
order with the mesh refinement. Finally, Figure 15 tells us that the harmonic
average is better for coarser grids, yet both methods are good for a fine grid.
We remark that we had the opposite conclusion in the first test (i.e, the
arithmetic average was better for coarser grids, refer to Figure 7).

6 Conclusion

We investigated the effect of the choice between the harmonic and arithmetic
averaging of the heat conduction coefficient on the heat transfer phenomena.
We concluded that one should not favor one method over the other, because
with a fine-enough mesh they are identical regardless of the model problem.
However, we want to note that when using coarse grids one method can be
better than the other depending on the model problem we are solving. For
instance, in the single-material test, we found that the harmonic average is
very inaccurate (refer to Figure 7). On the other hand, the harmonic average
is more accurate in the multi-material test (refer to Figures 15 and 13). It
is important to note that many validation and uncertainty runs are done on
coarse grids. Thus, in this case, one has to be very careful when choosing
the averaging technique.
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Figure 12: Errors at different times by the two methods when comparing the
coarse (M = 20 grid points ) solution to the fine (M = 800 grid points )
solution.
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Figure 13: Errors by the two methods when comparing the coarse (M = 20
grid points ) solution to the fine (M = 800 grid points ) solution. Log scale
is used in the y-coordinate direction.
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