Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

PDF Version Also Available for Download.

Description

This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth ... continued below

Creation Information

Jin, Feng January 7, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-04NT42329
  • DOI: 10.2172/945032 | External Link
  • Office of Scientific & Technical Information Report Number: 945032
  • Archival Resource Key: ark:/67531/metadc902526

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 7, 2009

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 1, 2016, 4:24 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jin, Feng. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating, report, January 7, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc902526/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.