Global quark polarization in non-central A+A collisions

PDF Version Also Available for Download.

Description

Partons produced in the early stage of non-central heavy-ioncollisionscan develop a longitudinal fluid shear because of unequal localnumber densities of participant target and projectile nucleons. Undersuch fluid shear, local parton pairs with non-vanishing impact parameterhave finite local relative orbital angular momentum along the directionopposite to the reaction plane. Such finite relative orbitalangularmomentum among locally interacting quark pairs can lead to global quarkpolarization along the same direction due to spin-orbital coupling. Locallongitudinal fluid shear is estimated within both Landau fireball andBjorken scaling model of initial parton production. Quark polarizationthrough quark-quark scatterings with the exchange of a thermal gluon iscalculated beyond small-angle ... continued below

Creation Information

Gao, Jian-Hua; Chen, Shou-Wan; Deng, Wei-tian; Tang, Zuo-Tang; Wang, Qun & Wang, Xin-Nian October 12, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Partons produced in the early stage of non-central heavy-ioncollisionscan develop a longitudinal fluid shear because of unequal localnumber densities of participant target and projectile nucleons. Undersuch fluid shear, local parton pairs with non-vanishing impact parameterhave finite local relative orbital angular momentum along the directionopposite to the reaction plane. Such finite relative orbitalangularmomentum among locally interacting quark pairs can lead to global quarkpolarization along the same direction due to spin-orbital coupling. Locallongitudinal fluid shear is estimated within both Landau fireball andBjorken scaling model of initial parton production. Quark polarizationthrough quark-quark scatterings with the exchange of a thermal gluon iscalculated beyond small-angle scattering approximation in a quark-gluonplasma. The polarization is shown to have a non-monotonic dependence onthe local relative orbital angular momentum dictated by the interplaybetween electric and magnetic interaction. It peaks at a value ofrelative orbital angular momentum which scales with the magnetic mass ofthe exchanged gluons. With the estimated small longitudinal fluid shearin semi-peripheral Au+Au collisions at the RHIC energy, the final quarkpolarization is found to be small left hbar P_q right hbar<0.04 inthe weak coupling limit. Possible behavior of the quark polarization inthe strong coupling limit and implications on the experimental detectionof such global quark polarization at RHIC and LHC are alsodiscussed.

Source

  • Journal Name: Physical Review C; Journal Volume: 0; Journal Issue: 0; Related Information: Journal Publication Date: 0

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63515
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928885
  • Archival Resource Key: ark:/67531/metadc902491

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 12, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gao, Jian-Hua; Chen, Shou-Wan; Deng, Wei-tian; Tang, Zuo-Tang; Wang, Qun & Wang, Xin-Nian. Global quark polarization in non-central A+A collisions, article, October 12, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc902491/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.